mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 10:20:24 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
259 lines
8 KiB
Python
259 lines
8 KiB
Python
import torch
|
|
import librosa
|
|
import json5
|
|
from huggingface_hub import hf_hub_download
|
|
from transformers import SeamlessM4TFeatureExtractor, Wav2Vec2BertModel
|
|
import safetensors
|
|
import numpy as np
|
|
|
|
from indextts.utils.maskgct.models.codec.kmeans.repcodec_model import RepCodec
|
|
from indextts.utils.maskgct.models.tts.maskgct.maskgct_s2a import MaskGCT_S2A
|
|
from indextts.utils.maskgct.models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder
|
|
import time
|
|
|
|
|
|
def _load_config(config_fn, lowercase=False):
|
|
"""Load configurations into a dictionary
|
|
|
|
Args:
|
|
config_fn (str): path to configuration file
|
|
lowercase (bool, optional): whether changing keys to lower case. Defaults to False.
|
|
|
|
Returns:
|
|
dict: dictionary that stores configurations
|
|
"""
|
|
with open(config_fn, "r") as f:
|
|
data = f.read()
|
|
config_ = json5.loads(data)
|
|
if "base_config" in config_:
|
|
# load configurations from new path
|
|
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"])
|
|
p_config_ = _load_config(p_config_path)
|
|
config_ = override_config(p_config_, config_)
|
|
if lowercase:
|
|
# change keys in config_ to lower case
|
|
config_ = get_lowercase_keys_config(config_)
|
|
return config_
|
|
|
|
|
|
def load_config(config_fn, lowercase=False):
|
|
"""Load configurations into a dictionary
|
|
|
|
Args:
|
|
config_fn (str): path to configuration file
|
|
lowercase (bool, optional): _description_. Defaults to False.
|
|
|
|
Returns:
|
|
JsonHParams: an object that stores configurations
|
|
"""
|
|
config_ = _load_config(config_fn, lowercase=lowercase)
|
|
# create an JsonHParams object with configuration dict
|
|
cfg = JsonHParams(**config_)
|
|
return cfg
|
|
|
|
|
|
class JsonHParams:
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = JsonHParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|
|
|
|
def build_semantic_model(path_='./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt'):
|
|
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
|
|
semantic_model.eval()
|
|
stat_mean_var = torch.load(path_)
|
|
semantic_mean = stat_mean_var["mean"]
|
|
semantic_std = torch.sqrt(stat_mean_var["var"])
|
|
return semantic_model, semantic_mean, semantic_std
|
|
|
|
|
|
def build_semantic_codec(cfg):
|
|
semantic_codec = RepCodec(cfg=cfg)
|
|
semantic_codec.eval()
|
|
return semantic_codec
|
|
|
|
|
|
def build_s2a_model(cfg, device):
|
|
soundstorm_model = MaskGCT_S2A(cfg=cfg)
|
|
soundstorm_model.eval()
|
|
soundstorm_model.to(device)
|
|
return soundstorm_model
|
|
|
|
|
|
def build_acoustic_codec(cfg, device):
|
|
codec_encoder = CodecEncoder(cfg=cfg.encoder)
|
|
codec_decoder = CodecDecoder(cfg=cfg.decoder)
|
|
codec_encoder.eval()
|
|
codec_decoder.eval()
|
|
codec_encoder.to(device)
|
|
codec_decoder.to(device)
|
|
return codec_encoder, codec_decoder
|
|
|
|
|
|
class Inference_Pipeline():
|
|
def __init__(
|
|
self,
|
|
semantic_model,
|
|
semantic_codec,
|
|
semantic_mean,
|
|
semantic_std,
|
|
codec_encoder,
|
|
codec_decoder,
|
|
s2a_model_1layer,
|
|
s2a_model_full,
|
|
):
|
|
self.semantic_model = semantic_model
|
|
self.semantic_codec = semantic_codec
|
|
self.semantic_mean = semantic_mean
|
|
self.semantic_std = semantic_std
|
|
|
|
self.codec_encoder = codec_encoder
|
|
self.codec_decoder = codec_decoder
|
|
self.s2a_model_1layer = s2a_model_1layer
|
|
self.s2a_model_full = s2a_model_full
|
|
|
|
@torch.no_grad()
|
|
def get_emb(self, input_features, attention_mask):
|
|
vq_emb = self.semantic_model(
|
|
input_features=input_features,
|
|
attention_mask=attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
feat = vq_emb.hidden_states[17] # (B, T, C)
|
|
feat = (feat - self.semantic_mean.to(feat)) / self.semantic_std.to(feat)
|
|
return feat
|
|
|
|
@torch.no_grad()
|
|
def extract_acoustic_code(self, speech):
|
|
vq_emb = self.codec_encoder(speech.unsqueeze(1))
|
|
_, vq, _, _, _ = self.codec_decoder.quantizer(vq_emb)
|
|
acoustic_code = vq.permute(1, 2, 0)
|
|
return acoustic_code
|
|
|
|
@torch.no_grad()
|
|
def get_scode(self, inputs):
|
|
semantic_code, feat = self.semantic_codec.quantize(inputs)
|
|
# vq = self.semantic_codec.quantizer.vq2emb(semantic_code.unsqueeze(1))
|
|
# vq = vq.transpose(1,2)
|
|
return semantic_code
|
|
|
|
@torch.no_grad()
|
|
def semantic2acoustic(
|
|
self,
|
|
combine_semantic_code,
|
|
acoustic_code,
|
|
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
cfg=2.5,
|
|
rescale_cfg=0.75,
|
|
):
|
|
semantic_code = combine_semantic_code
|
|
|
|
cond = self.s2a_model_1layer.cond_emb(semantic_code)
|
|
prompt = acoustic_code[:, :, :]
|
|
predict_1layer = self.s2a_model_1layer.reverse_diffusion(
|
|
cond=cond,
|
|
prompt=prompt,
|
|
temp=1.5,
|
|
filter_thres=0.98,
|
|
n_timesteps=n_timesteps[:1],
|
|
cfg=cfg,
|
|
rescale_cfg=rescale_cfg,
|
|
)
|
|
|
|
cond = self.s2a_model_full.cond_emb(semantic_code)
|
|
prompt = acoustic_code[:, :, :]
|
|
predict_full = self.s2a_model_full.reverse_diffusion(
|
|
cond=cond,
|
|
prompt=prompt,
|
|
temp=1.5,
|
|
filter_thres=0.98,
|
|
n_timesteps=n_timesteps,
|
|
cfg=cfg,
|
|
rescale_cfg=rescale_cfg,
|
|
gt_code=predict_1layer,
|
|
)
|
|
|
|
vq_emb = self.codec_decoder.vq2emb(
|
|
predict_full.permute(2, 0, 1), n_quantizers=12
|
|
)
|
|
recovered_audio = self.codec_decoder(vq_emb)
|
|
prompt_vq_emb = self.codec_decoder.vq2emb(
|
|
prompt.permute(2, 0, 1), n_quantizers=12
|
|
)
|
|
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb)
|
|
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
|
|
recovered_audio = recovered_audio[0][0].cpu().numpy()
|
|
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio])
|
|
|
|
return combine_audio, recovered_audio
|
|
|
|
def s2a_inference(
|
|
self,
|
|
prompt_speech_path,
|
|
combine_semantic_code,
|
|
cfg=2.5,
|
|
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
cfg_s2a=2.5,
|
|
rescale_cfg_s2a=0.75,
|
|
):
|
|
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
|
acoustic_code = self.extract_acoustic_code(
|
|
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device)
|
|
)
|
|
_, recovered_audio = self.semantic2acoustic(
|
|
combine_semantic_code,
|
|
acoustic_code,
|
|
n_timesteps=n_timesteps_s2a,
|
|
cfg=cfg_s2a,
|
|
rescale_cfg=rescale_cfg_s2a,
|
|
)
|
|
|
|
return recovered_audio
|
|
|
|
@torch.no_grad()
|
|
def gt_inference(
|
|
self,
|
|
prompt_speech_path,
|
|
combine_semantic_code,
|
|
):
|
|
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
|
'''
|
|
acoustic_code = self.extract_acoustic_code(
|
|
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device)
|
|
)
|
|
prompt = acoustic_code[:, :, :]
|
|
prompt_vq_emb = self.codec_decoder.vq2emb(
|
|
prompt.permute(2, 0, 1), n_quantizers=12
|
|
)
|
|
'''
|
|
|
|
prompt_vq_emb = self.codec_encoder(torch.tensor(speech).unsqueeze(0).unsqueeze(1).to(combine_semantic_code.device))
|
|
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb)
|
|
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
|
|
return recovered_prompt_audio
|