mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
102 lines
2.6 KiB
Python
102 lines
2.6 KiB
Python
import torch
|
|
import pyworld as pw
|
|
import numpy as np
|
|
import soundfile as sf
|
|
import os
|
|
from torchaudio.functional import pitch_shift
|
|
import librosa
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
|
|
|
|
|
def dynamic_range_decompression(x, C=1):
|
|
return np.exp(x) / C
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
output = dynamic_range_compression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
output = dynamic_range_decompression_torch(magnitudes)
|
|
return output
|
|
|
|
|
|
class MelSpectrogram(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_fft,
|
|
num_mels,
|
|
sampling_rate,
|
|
hop_size,
|
|
win_size,
|
|
fmin,
|
|
fmax,
|
|
center=False,
|
|
):
|
|
super(MelSpectrogram, self).__init__()
|
|
self.n_fft = n_fft
|
|
self.hop_size = hop_size
|
|
self.win_size = win_size
|
|
self.sampling_rate = sampling_rate
|
|
self.num_mels = num_mels
|
|
self.fmin = fmin
|
|
self.fmax = fmax
|
|
self.center = center
|
|
|
|
mel_basis = {}
|
|
hann_window = {}
|
|
|
|
mel = librosa_mel_fn(
|
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
|
)
|
|
mel_basis = torch.from_numpy(mel).float()
|
|
hann_window = torch.hann_window(win_size)
|
|
|
|
self.register_buffer("mel_basis", mel_basis)
|
|
self.register_buffer("hann_window", hann_window)
|
|
|
|
def forward(self, y):
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(
|
|
int((self.n_fft - self.hop_size) / 2),
|
|
int((self.n_fft - self.hop_size) / 2),
|
|
),
|
|
mode="reflect",
|
|
)
|
|
y = y.squeeze(1)
|
|
spec = torch.stft(
|
|
y,
|
|
self.n_fft,
|
|
hop_length=self.hop_size,
|
|
win_length=self.win_size,
|
|
window=self.hann_window,
|
|
center=self.center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
spec = torch.view_as_real(spec)
|
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
|
|
|
spec = torch.matmul(self.mel_basis, spec)
|
|
spec = spectral_normalize_torch(spec)
|
|
|
|
return spec
|