mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
1222 lines
40 KiB
Python
1222 lines
40 KiB
Python
# Copyright (c) 2023 Amphion.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn, sin, pow
|
|
from torch.nn import Parameter
|
|
import torch.nn.functional as F
|
|
from torch.nn.utils import weight_norm
|
|
from .alias_free_torch import *
|
|
from .quantize import *
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange
|
|
from .transformer import TransformerEncoder
|
|
from .gradient_reversal import GradientReversal
|
|
from .melspec import MelSpectrogram
|
|
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, nn.Conv1d):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
def WNConv1d(*args, **kwargs):
|
|
return weight_norm(nn.Conv1d(*args, **kwargs))
|
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs):
|
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
|
|
|
|
|
class CNNLSTM(nn.Module):
|
|
def __init__(self, indim, outdim, head, global_pred=False):
|
|
super().__init__()
|
|
self.global_pred = global_pred
|
|
self.model = nn.Sequential(
|
|
ResidualUnit(indim, dilation=1),
|
|
ResidualUnit(indim, dilation=2),
|
|
ResidualUnit(indim, dilation=3),
|
|
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
|
|
Rearrange("b c t -> b t c"),
|
|
)
|
|
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
|
|
|
|
def forward(self, x):
|
|
# x: [B, C, T]
|
|
x = self.model(x)
|
|
if self.global_pred:
|
|
x = torch.mean(x, dim=1, keepdim=False)
|
|
outs = [head(x) for head in self.heads]
|
|
return outs
|
|
|
|
|
|
class SnakeBeta(nn.Module):
|
|
"""
|
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
|
Shape:
|
|
- Input: (B, C, T)
|
|
- Output: (B, C, T), same shape as the input
|
|
Parameters:
|
|
- alpha - trainable parameter that controls frequency
|
|
- beta - trainable parameter that controls magnitude
|
|
References:
|
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
|
https://arxiv.org/abs/2006.08195
|
|
Examples:
|
|
>>> a1 = snakebeta(256)
|
|
>>> x = torch.randn(256)
|
|
>>> x = a1(x)
|
|
"""
|
|
|
|
def __init__(
|
|
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
|
):
|
|
"""
|
|
Initialization.
|
|
INPUT:
|
|
- in_features: shape of the input
|
|
- alpha - trainable parameter that controls frequency
|
|
- beta - trainable parameter that controls magnitude
|
|
alpha is initialized to 1 by default, higher values = higher-frequency.
|
|
beta is initialized to 1 by default, higher values = higher-magnitude.
|
|
alpha will be trained along with the rest of your model.
|
|
"""
|
|
super(SnakeBeta, self).__init__()
|
|
self.in_features = in_features
|
|
|
|
# initialize alpha
|
|
self.alpha_logscale = alpha_logscale
|
|
if self.alpha_logscale: # log scale alphas initialized to zeros
|
|
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
|
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
|
else: # linear scale alphas initialized to ones
|
|
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
|
self.beta = Parameter(torch.ones(in_features) * alpha)
|
|
|
|
self.alpha.requires_grad = alpha_trainable
|
|
self.beta.requires_grad = alpha_trainable
|
|
|
|
self.no_div_by_zero = 0.000000001
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the function.
|
|
Applies the function to the input elementwise.
|
|
SnakeBeta := x + 1/b * sin^2 (xa)
|
|
"""
|
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
|
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
|
if self.alpha_logscale:
|
|
alpha = torch.exp(alpha)
|
|
beta = torch.exp(beta)
|
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
|
|
|
return x
|
|
|
|
|
|
class ResidualUnit(nn.Module):
|
|
def __init__(self, dim: int = 16, dilation: int = 1):
|
|
super().__init__()
|
|
pad = ((7 - 1) * dilation) // 2
|
|
self.block = nn.Sequential(
|
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
|
|
WNConv1d(dim, dim, kernel_size=1),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return x + self.block(x)
|
|
|
|
|
|
class EncoderBlock(nn.Module):
|
|
def __init__(self, dim: int = 16, stride: int = 1):
|
|
super().__init__()
|
|
self.block = nn.Sequential(
|
|
ResidualUnit(dim // 2, dilation=1),
|
|
ResidualUnit(dim // 2, dilation=3),
|
|
ResidualUnit(dim // 2, dilation=9),
|
|
Activation1d(activation=SnakeBeta(dim // 2, alpha_logscale=True)),
|
|
WNConv1d(
|
|
dim // 2,
|
|
dim,
|
|
kernel_size=2 * stride,
|
|
stride=stride,
|
|
padding=stride // 2 + stride % 2,
|
|
),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.block(x)
|
|
|
|
|
|
class FACodecEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
ngf=32,
|
|
up_ratios=(2, 4, 5, 5),
|
|
out_channels=1024,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = np.prod(up_ratios)
|
|
self.up_ratios = up_ratios
|
|
|
|
# Create first convolution
|
|
d_model = ngf
|
|
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
|
|
|
# Create EncoderBlocks that double channels as they downsample by `stride`
|
|
for stride in up_ratios:
|
|
d_model *= 2
|
|
self.block += [EncoderBlock(d_model, stride=stride)]
|
|
|
|
# Create last convolution
|
|
self.block += [
|
|
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
|
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
|
]
|
|
|
|
# Wrap black into nn.Sequential
|
|
self.block = nn.Sequential(*self.block)
|
|
self.enc_dim = d_model
|
|
|
|
self.reset_parameters()
|
|
|
|
def forward(self, x):
|
|
out = self.block(x)
|
|
return out
|
|
|
|
def inference(self, x):
|
|
return self.block(x)
|
|
|
|
def remove_weight_norm(self):
|
|
"""Remove weight normalization module from all of the layers."""
|
|
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError: # this module didn't have weight norm
|
|
return
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def apply_weight_norm(self):
|
|
"""Apply weight normalization module from all of the layers."""
|
|
|
|
def _apply_weight_norm(m):
|
|
if isinstance(m, nn.Conv1d):
|
|
torch.nn.utils.weight_norm(m)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def reset_parameters(self):
|
|
self.apply(init_weights)
|
|
|
|
|
|
class DecoderBlock(nn.Module):
|
|
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
|
|
super().__init__()
|
|
self.block = nn.Sequential(
|
|
Activation1d(activation=SnakeBeta(input_dim, alpha_logscale=True)),
|
|
WNConvTranspose1d(
|
|
input_dim,
|
|
output_dim,
|
|
kernel_size=2 * stride,
|
|
stride=stride,
|
|
padding=stride // 2 + stride % 2,
|
|
output_padding=stride % 2,
|
|
),
|
|
ResidualUnit(output_dim, dilation=1),
|
|
ResidualUnit(output_dim, dilation=3),
|
|
ResidualUnit(output_dim, dilation=9),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.block(x)
|
|
|
|
|
|
class FACodecDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels=256,
|
|
upsample_initial_channel=1536,
|
|
ngf=32,
|
|
up_ratios=(5, 5, 4, 2),
|
|
vq_num_q_c=2,
|
|
vq_num_q_p=1,
|
|
vq_num_q_r=3,
|
|
vq_dim=1024,
|
|
vq_commit_weight=0.005,
|
|
vq_weight_init=False,
|
|
vq_full_commit_loss=False,
|
|
codebook_dim=8,
|
|
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
|
codebook_size_content=10,
|
|
codebook_size_residual=10,
|
|
quantizer_dropout=0.0,
|
|
dropout_type="linear",
|
|
use_gr_content_f0=False,
|
|
use_gr_prosody_phone=False,
|
|
use_gr_residual_f0=False,
|
|
use_gr_residual_phone=False,
|
|
use_gr_x_timbre=False,
|
|
use_random_mask_residual=True,
|
|
prob_random_mask_residual=0.75,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = np.prod(up_ratios)
|
|
self.ngf = ngf
|
|
self.up_ratios = up_ratios
|
|
|
|
self.use_random_mask_residual = use_random_mask_residual
|
|
self.prob_random_mask_residual = prob_random_mask_residual
|
|
|
|
self.vq_num_q_p = vq_num_q_p
|
|
self.vq_num_q_c = vq_num_q_c
|
|
self.vq_num_q_r = vq_num_q_r
|
|
|
|
self.codebook_size_prosody = codebook_size_prosody
|
|
self.codebook_size_content = codebook_size_content
|
|
self.codebook_size_residual = codebook_size_residual
|
|
|
|
quantizer_class = ResidualVQ
|
|
|
|
self.quantizer = nn.ModuleList()
|
|
|
|
# prosody
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_p,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_prosody,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# phone
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_c,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_content,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# residual
|
|
if self.vq_num_q_r > 0:
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_r,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_residual,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# Add first conv layer
|
|
channels = upsample_initial_channel
|
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
|
|
# Add upsampling + MRF blocks
|
|
for i, stride in enumerate(up_ratios):
|
|
input_dim = channels // 2**i
|
|
output_dim = channels // 2 ** (i + 1)
|
|
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
|
|
# Add final conv layer
|
|
layers += [
|
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
nn.Tanh(),
|
|
]
|
|
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
self.timbre_encoder = TransformerEncoder(
|
|
enc_emb_tokens=None,
|
|
encoder_layer=4,
|
|
encoder_hidden=256,
|
|
encoder_head=4,
|
|
conv_filter_size=1024,
|
|
conv_kernel_size=5,
|
|
encoder_dropout=0.1,
|
|
use_cln=False,
|
|
)
|
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
self.timbre_linear.bias.data[:in_channels] = 1
|
|
self.timbre_linear.bias.data[in_channels:] = 0
|
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
|
|
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
|
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
|
|
|
self.use_gr_content_f0 = use_gr_content_f0
|
|
self.use_gr_prosody_phone = use_gr_prosody_phone
|
|
self.use_gr_residual_f0 = use_gr_residual_f0
|
|
self.use_gr_residual_phone = use_gr_residual_phone
|
|
self.use_gr_x_timbre = use_gr_x_timbre
|
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
|
self.res_f0_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
)
|
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
|
self.res_phone_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
)
|
|
|
|
if self.use_gr_content_f0:
|
|
self.content_f0_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
)
|
|
|
|
if self.use_gr_prosody_phone:
|
|
self.prosody_phone_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
)
|
|
|
|
if self.use_gr_x_timbre:
|
|
self.x_timbre_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1),
|
|
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
|
)
|
|
|
|
self.reset_parameters()
|
|
|
|
def quantize(self, x, n_quantizers=None):
|
|
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
|
|
|
# prosody
|
|
f0_input = x # (B, d, T)
|
|
f0_quantizer = self.quantizer[0]
|
|
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0))
|
|
commit_loss.append(commit)
|
|
|
|
# phone
|
|
phone_input = x
|
|
phone_quantizer = self.quantizer[1]
|
|
out, q, commit, quantized = phone_quantizer(
|
|
phone_input, n_quantizers=n_quantizers
|
|
)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0))
|
|
commit_loss.append(commit)
|
|
|
|
# residual
|
|
if self.vq_num_q_r > 0:
|
|
residual_quantizer = self.quantizer[2]
|
|
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
|
out, q, commit, quantized = residual_quantizer(
|
|
residual_input, n_quantizers=n_quantizers
|
|
)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
|
commit_loss.append(commit)
|
|
|
|
qs = torch.cat(qs, dim=0)
|
|
commit_loss = torch.cat(commit_loss, dim=0)
|
|
return outs, qs, commit_loss, quantized_buf
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
vq=True,
|
|
get_vq=False,
|
|
eval_vq=True,
|
|
speaker_embedding=None,
|
|
n_quantizers=None,
|
|
quantized=None,
|
|
):
|
|
if get_vq:
|
|
return self.quantizer.get_emb()
|
|
if vq is True:
|
|
if eval_vq:
|
|
self.quantizer.eval()
|
|
x_timbre = x
|
|
outs, qs, commit_loss, quantized_buf = self.quantize(
|
|
x, n_quantizers=n_quantizers
|
|
)
|
|
|
|
x_timbre = x_timbre.transpose(1, 2)
|
|
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
|
x_timbre = x_timbre.transpose(1, 2)
|
|
spk_embs = torch.mean(x_timbre, dim=2)
|
|
return outs, qs, commit_loss, quantized_buf, spk_embs
|
|
|
|
out = {}
|
|
|
|
layer_0 = quantized[0]
|
|
f0, uv = self.f0_predictor(layer_0)
|
|
f0 = rearrange(f0, "... 1 -> ...")
|
|
uv = rearrange(uv, "... 1 -> ...")
|
|
|
|
layer_1 = quantized[1]
|
|
(phone,) = self.phone_predictor(layer_1)
|
|
|
|
out = {"f0": f0, "uv": uv, "phone": phone}
|
|
|
|
if self.use_gr_prosody_phone:
|
|
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
|
out["prosody_phone"] = prosody_phone
|
|
|
|
if self.use_gr_content_f0:
|
|
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
|
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
|
content_uv = rearrange(content_uv, "... 1 -> ...")
|
|
out["content_f0"] = content_f0
|
|
out["content_uv"] = content_uv
|
|
|
|
if self.vq_num_q_r > 0:
|
|
layer_2 = quantized[2]
|
|
|
|
if self.use_gr_residual_f0:
|
|
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
|
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
|
res_uv = rearrange(res_uv, "... 1 -> ...")
|
|
out["res_f0"] = res_f0
|
|
out["res_uv"] = res_uv
|
|
|
|
if self.use_gr_residual_phone:
|
|
(res_phone,) = self.res_phone_predictor(layer_2)
|
|
out["res_phone"] = res_phone
|
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
if self.vq_num_q_r > 0:
|
|
if self.use_random_mask_residual:
|
|
bsz = quantized[2].shape[0]
|
|
res_mask = np.random.choice(
|
|
[0, 1],
|
|
size=bsz,
|
|
p=[
|
|
self.prob_random_mask_residual,
|
|
1 - self.prob_random_mask_residual,
|
|
],
|
|
)
|
|
res_mask = (
|
|
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
|
) # (B, 1, 1)
|
|
res_mask = res_mask.to(
|
|
device=quantized[2].device, dtype=quantized[2].dtype
|
|
)
|
|
x = (
|
|
quantized[0].detach()
|
|
+ quantized[1].detach()
|
|
+ quantized[2] * res_mask
|
|
)
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
|
else:
|
|
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
|
else:
|
|
x = quantized[0].detach() + quantized[1].detach()
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
|
|
|
if self.use_gr_x_timbre:
|
|
(x_timbre,) = self.x_timbre_predictor(x)
|
|
out["x_timbre"] = x_timbre
|
|
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
|
|
x = self.model(x)
|
|
out["audio"] = x
|
|
|
|
return out
|
|
|
|
def vq2emb(self, vq, use_residual_code=True):
|
|
# vq: [num_quantizer, B, T]
|
|
self.quantizer = self.quantizer.eval()
|
|
out = 0
|
|
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
|
out += self.quantizer[1].vq2emb(
|
|
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
|
)
|
|
if self.vq_num_q_r > 0 and use_residual_code:
|
|
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
|
return out
|
|
|
|
def inference(self, x, speaker_embedding):
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
x = self.model(x)
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
"""Remove weight normalization module from all of the layers."""
|
|
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError: # this module didn't have weight norm
|
|
return
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def apply_weight_norm(self):
|
|
"""Apply weight normalization module from all of the layers."""
|
|
|
|
def _apply_weight_norm(m):
|
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
|
torch.nn.utils.weight_norm(m)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def reset_parameters(self):
|
|
self.apply(init_weights)
|
|
|
|
|
|
class FACodecRedecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels=256,
|
|
upsample_initial_channel=1280,
|
|
up_ratios=(5, 5, 4, 2),
|
|
vq_num_q_c=2,
|
|
vq_num_q_p=1,
|
|
vq_num_q_r=3,
|
|
vq_dim=256,
|
|
codebook_size_prosody=10,
|
|
codebook_size_content=10,
|
|
codebook_size_residual=10,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = np.prod(up_ratios)
|
|
self.up_ratios = up_ratios
|
|
|
|
self.vq_num_q_p = vq_num_q_p
|
|
self.vq_num_q_c = vq_num_q_c
|
|
self.vq_num_q_r = vq_num_q_r
|
|
|
|
self.vq_dim = vq_dim
|
|
|
|
self.codebook_size_prosody = codebook_size_prosody
|
|
self.codebook_size_content = codebook_size_content
|
|
self.codebook_size_residual = codebook_size_residual
|
|
|
|
self.prosody_embs = nn.ModuleList()
|
|
for i in range(self.vq_num_q_p):
|
|
emb_tokens = nn.Embedding(
|
|
num_embeddings=2**self.codebook_size_prosody,
|
|
embedding_dim=self.vq_dim,
|
|
)
|
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
self.prosody_embs.append(emb_tokens)
|
|
self.content_embs = nn.ModuleList()
|
|
for i in range(self.vq_num_q_c):
|
|
emb_tokens = nn.Embedding(
|
|
num_embeddings=2**self.codebook_size_content,
|
|
embedding_dim=self.vq_dim,
|
|
)
|
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
self.content_embs.append(emb_tokens)
|
|
self.residual_embs = nn.ModuleList()
|
|
for i in range(self.vq_num_q_r):
|
|
emb_tokens = nn.Embedding(
|
|
num_embeddings=2**self.codebook_size_residual,
|
|
embedding_dim=self.vq_dim,
|
|
)
|
|
emb_tokens.weight.data.normal_(mean=0.0, std=1e-5)
|
|
self.residual_embs.append(emb_tokens)
|
|
|
|
# Add first conv layer
|
|
channels = upsample_initial_channel
|
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
|
|
# Add upsampling + MRF blocks
|
|
for i, stride in enumerate(up_ratios):
|
|
input_dim = channels // 2**i
|
|
output_dim = channels // 2 ** (i + 1)
|
|
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
|
|
# Add final conv layer
|
|
layers += [
|
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
nn.Tanh(),
|
|
]
|
|
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
self.timbre_linear.bias.data[:in_channels] = 1
|
|
self.timbre_linear.bias.data[in_channels:] = 0
|
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
|
|
self.timbre_cond_prosody_enc = TransformerEncoder(
|
|
enc_emb_tokens=None,
|
|
encoder_layer=4,
|
|
encoder_hidden=256,
|
|
encoder_head=4,
|
|
conv_filter_size=1024,
|
|
conv_kernel_size=5,
|
|
encoder_dropout=0.1,
|
|
use_cln=True,
|
|
cfg=None,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
vq,
|
|
speaker_embedding,
|
|
use_residual_code=False,
|
|
):
|
|
|
|
x = 0
|
|
|
|
x_p = 0
|
|
for i in range(self.vq_num_q_p):
|
|
x_p = x_p + self.prosody_embs[i](vq[i]) # (B, T, d)
|
|
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_p.shape[1], -1)
|
|
x_p = self.timbre_cond_prosody_enc(
|
|
x_p, key_padding_mask=None, condition=spk_cond
|
|
)
|
|
x = x + x_p
|
|
|
|
x_c = 0
|
|
for i in range(self.vq_num_q_c):
|
|
x_c = x_c + self.content_embs[i](vq[self.vq_num_q_p + i])
|
|
|
|
x = x + x_c
|
|
|
|
if use_residual_code:
|
|
|
|
x_r = 0
|
|
for i in range(self.vq_num_q_r):
|
|
x_r = x_r + self.residual_embs[i](
|
|
vq[self.vq_num_q_p + self.vq_num_q_c + i]
|
|
)
|
|
x = x + x_r
|
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
x = self.model(x)
|
|
|
|
return x
|
|
|
|
def vq2emb(self, vq, speaker_embedding, use_residual=True):
|
|
|
|
out = 0
|
|
|
|
x_t = 0
|
|
for i in range(self.vq_num_q_p):
|
|
x_t += self.prosody_embs[i](vq[i]) # (B, T, d)
|
|
spk_cond = speaker_embedding.unsqueeze(1).expand(-1, x_t.shape[1], -1)
|
|
x_t = self.timbre_cond_prosody_enc(
|
|
x_t, key_padding_mask=None, condition=spk_cond
|
|
)
|
|
|
|
# prosody
|
|
out += x_t
|
|
|
|
# content
|
|
for i in range(self.vq_num_q_c):
|
|
out += self.content_embs[i](vq[self.vq_num_q_p + i])
|
|
|
|
# residual
|
|
if use_residual:
|
|
for i in range(self.vq_num_q_r):
|
|
out += self.residual_embs[i](vq[self.vq_num_q_p + self.vq_num_q_c + i])
|
|
|
|
out = out.transpose(1, 2) # (B, T, d) -> (B, d, T)
|
|
return out
|
|
|
|
def inference(self, x, speaker_embedding):
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
x = self.model(x)
|
|
return x
|
|
|
|
|
|
class FACodecEncoderV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
ngf=32,
|
|
up_ratios=(2, 4, 5, 5),
|
|
out_channels=1024,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = np.prod(up_ratios)
|
|
self.up_ratios = up_ratios
|
|
|
|
# Create first convolution
|
|
d_model = ngf
|
|
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
|
|
|
# Create EncoderBlocks that double channels as they downsample by `stride`
|
|
for stride in up_ratios:
|
|
d_model *= 2
|
|
self.block += [EncoderBlock(d_model, stride=stride)]
|
|
|
|
# Create last convolution
|
|
self.block += [
|
|
Activation1d(activation=SnakeBeta(d_model, alpha_logscale=True)),
|
|
WNConv1d(d_model, out_channels, kernel_size=3, padding=1),
|
|
]
|
|
|
|
# Wrap black into nn.Sequential
|
|
self.block = nn.Sequential(*self.block)
|
|
self.enc_dim = d_model
|
|
|
|
self.mel_transform = MelSpectrogram(
|
|
n_fft=1024,
|
|
num_mels=80,
|
|
sampling_rate=16000,
|
|
hop_size=200,
|
|
win_size=800,
|
|
fmin=0,
|
|
fmax=8000,
|
|
)
|
|
|
|
self.reset_parameters()
|
|
|
|
def forward(self, x):
|
|
out = self.block(x)
|
|
return out
|
|
|
|
def inference(self, x):
|
|
return self.block(x)
|
|
|
|
def get_prosody_feature(self, x):
|
|
return self.mel_transform(x.squeeze(1))[:, :20, :]
|
|
|
|
def remove_weight_norm(self):
|
|
"""Remove weight normalization module from all of the layers."""
|
|
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError: # this module didn't have weight norm
|
|
return
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def apply_weight_norm(self):
|
|
"""Apply weight normalization module from all of the layers."""
|
|
|
|
def _apply_weight_norm(m):
|
|
if isinstance(m, nn.Conv1d):
|
|
torch.nn.utils.weight_norm(m)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def reset_parameters(self):
|
|
self.apply(init_weights)
|
|
|
|
|
|
class FACodecDecoderV2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels=256,
|
|
upsample_initial_channel=1536,
|
|
ngf=32,
|
|
up_ratios=(5, 5, 4, 2),
|
|
vq_num_q_c=2,
|
|
vq_num_q_p=1,
|
|
vq_num_q_r=3,
|
|
vq_dim=1024,
|
|
vq_commit_weight=0.005,
|
|
vq_weight_init=False,
|
|
vq_full_commit_loss=False,
|
|
codebook_dim=8,
|
|
codebook_size_prosody=10, # true codebook size is equal to 2^codebook_size
|
|
codebook_size_content=10,
|
|
codebook_size_residual=10,
|
|
quantizer_dropout=0.0,
|
|
dropout_type="linear",
|
|
use_gr_content_f0=False,
|
|
use_gr_prosody_phone=False,
|
|
use_gr_residual_f0=False,
|
|
use_gr_residual_phone=False,
|
|
use_gr_x_timbre=False,
|
|
use_random_mask_residual=True,
|
|
prob_random_mask_residual=0.75,
|
|
):
|
|
super().__init__()
|
|
self.hop_length = np.prod(up_ratios)
|
|
self.ngf = ngf
|
|
self.up_ratios = up_ratios
|
|
|
|
self.use_random_mask_residual = use_random_mask_residual
|
|
self.prob_random_mask_residual = prob_random_mask_residual
|
|
|
|
self.vq_num_q_p = vq_num_q_p
|
|
self.vq_num_q_c = vq_num_q_c
|
|
self.vq_num_q_r = vq_num_q_r
|
|
|
|
self.codebook_size_prosody = codebook_size_prosody
|
|
self.codebook_size_content = codebook_size_content
|
|
self.codebook_size_residual = codebook_size_residual
|
|
|
|
quantizer_class = ResidualVQ
|
|
|
|
self.quantizer = nn.ModuleList()
|
|
|
|
# prosody
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_p,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_prosody,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# phone
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_c,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_content,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# residual
|
|
if self.vq_num_q_r > 0:
|
|
quantizer = quantizer_class(
|
|
num_quantizers=vq_num_q_r,
|
|
dim=vq_dim,
|
|
codebook_size=codebook_size_residual,
|
|
codebook_dim=codebook_dim,
|
|
threshold_ema_dead_code=2,
|
|
commitment=vq_commit_weight,
|
|
weight_init=vq_weight_init,
|
|
full_commit_loss=vq_full_commit_loss,
|
|
quantizer_dropout=quantizer_dropout,
|
|
dropout_type=dropout_type,
|
|
)
|
|
self.quantizer.append(quantizer)
|
|
|
|
# Add first conv layer
|
|
channels = upsample_initial_channel
|
|
layers = [WNConv1d(in_channels, channels, kernel_size=7, padding=3)]
|
|
|
|
# Add upsampling + MRF blocks
|
|
for i, stride in enumerate(up_ratios):
|
|
input_dim = channels // 2**i
|
|
output_dim = channels // 2 ** (i + 1)
|
|
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
|
|
|
# Add final conv layer
|
|
layers += [
|
|
Activation1d(activation=SnakeBeta(output_dim, alpha_logscale=True)),
|
|
WNConv1d(output_dim, 1, kernel_size=7, padding=3),
|
|
nn.Tanh(),
|
|
]
|
|
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
self.timbre_encoder = TransformerEncoder(
|
|
enc_emb_tokens=None,
|
|
encoder_layer=4,
|
|
encoder_hidden=256,
|
|
encoder_head=4,
|
|
conv_filter_size=1024,
|
|
conv_kernel_size=5,
|
|
encoder_dropout=0.1,
|
|
use_cln=False,
|
|
)
|
|
|
|
self.timbre_linear = nn.Linear(in_channels, in_channels * 2)
|
|
self.timbre_linear.bias.data[:in_channels] = 1
|
|
self.timbre_linear.bias.data[in_channels:] = 0
|
|
self.timbre_norm = nn.LayerNorm(in_channels, elementwise_affine=False)
|
|
|
|
self.f0_predictor = CNNLSTM(in_channels, 1, 2)
|
|
self.phone_predictor = CNNLSTM(in_channels, 5003, 1)
|
|
|
|
self.use_gr_content_f0 = use_gr_content_f0
|
|
self.use_gr_prosody_phone = use_gr_prosody_phone
|
|
self.use_gr_residual_f0 = use_gr_residual_f0
|
|
self.use_gr_residual_phone = use_gr_residual_phone
|
|
self.use_gr_x_timbre = use_gr_x_timbre
|
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_f0:
|
|
self.res_f0_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
)
|
|
|
|
if self.vq_num_q_r > 0 and self.use_gr_residual_phone > 0:
|
|
self.res_phone_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
)
|
|
|
|
if self.use_gr_content_f0:
|
|
self.content_f0_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 1, 2)
|
|
)
|
|
|
|
if self.use_gr_prosody_phone:
|
|
self.prosody_phone_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1.0), CNNLSTM(in_channels, 5003, 1)
|
|
)
|
|
|
|
if self.use_gr_x_timbre:
|
|
self.x_timbre_predictor = nn.Sequential(
|
|
GradientReversal(alpha=1),
|
|
CNNLSTM(in_channels, 245200, 1, global_pred=True),
|
|
)
|
|
|
|
self.melspec_linear = nn.Linear(20, 256)
|
|
self.melspec_encoder = TransformerEncoder(
|
|
enc_emb_tokens=None,
|
|
encoder_layer=4,
|
|
encoder_hidden=256,
|
|
encoder_head=4,
|
|
conv_filter_size=1024,
|
|
conv_kernel_size=5,
|
|
encoder_dropout=0.1,
|
|
use_cln=False,
|
|
cfg=None,
|
|
)
|
|
|
|
self.reset_parameters()
|
|
|
|
def quantize(self, x, prosody_feature, n_quantizers=None):
|
|
outs, qs, commit_loss, quantized_buf = 0, [], [], []
|
|
|
|
# prosody
|
|
f0_input = prosody_feature.transpose(1, 2) # (B, T, 20)
|
|
f0_input = self.melspec_linear(f0_input)
|
|
f0_input = self.melspec_encoder(f0_input, None, None)
|
|
f0_input = f0_input.transpose(1, 2)
|
|
f0_quantizer = self.quantizer[0]
|
|
out, q, commit, quantized = f0_quantizer(f0_input, n_quantizers=n_quantizers)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0))
|
|
commit_loss.append(commit)
|
|
|
|
# phone
|
|
phone_input = x
|
|
phone_quantizer = self.quantizer[1]
|
|
out, q, commit, quantized = phone_quantizer(
|
|
phone_input, n_quantizers=n_quantizers
|
|
)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0))
|
|
commit_loss.append(commit)
|
|
|
|
# residual
|
|
if self.vq_num_q_r > 0:
|
|
residual_quantizer = self.quantizer[2]
|
|
residual_input = x - (quantized_buf[0] + quantized_buf[1]).detach()
|
|
out, q, commit, quantized = residual_quantizer(
|
|
residual_input, n_quantizers=n_quantizers
|
|
)
|
|
outs += out
|
|
qs.append(q)
|
|
quantized_buf.append(quantized.sum(0)) # [L, B, C, T] -> [B, C, T]
|
|
commit_loss.append(commit)
|
|
|
|
qs = torch.cat(qs, dim=0)
|
|
commit_loss = torch.cat(commit_loss, dim=0)
|
|
return outs, qs, commit_loss, quantized_buf
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
prosody_feature,
|
|
vq=True,
|
|
get_vq=False,
|
|
eval_vq=True,
|
|
speaker_embedding=None,
|
|
n_quantizers=None,
|
|
quantized=None,
|
|
):
|
|
if get_vq:
|
|
return self.quantizer.get_emb()
|
|
if vq is True:
|
|
if eval_vq:
|
|
self.quantizer.eval()
|
|
x_timbre = x
|
|
outs, qs, commit_loss, quantized_buf = self.quantize(
|
|
x, prosody_feature, n_quantizers=n_quantizers
|
|
)
|
|
|
|
x_timbre = x_timbre.transpose(1, 2)
|
|
x_timbre = self.timbre_encoder(x_timbre, None, None)
|
|
x_timbre = x_timbre.transpose(1, 2)
|
|
spk_embs = torch.mean(x_timbre, dim=2)
|
|
return outs, qs, commit_loss, quantized_buf, spk_embs
|
|
|
|
out = {}
|
|
|
|
layer_0 = quantized[0]
|
|
f0, uv = self.f0_predictor(layer_0)
|
|
f0 = rearrange(f0, "... 1 -> ...")
|
|
uv = rearrange(uv, "... 1 -> ...")
|
|
|
|
layer_1 = quantized[1]
|
|
(phone,) = self.phone_predictor(layer_1)
|
|
|
|
out = {"f0": f0, "uv": uv, "phone": phone}
|
|
|
|
if self.use_gr_prosody_phone:
|
|
(prosody_phone,) = self.prosody_phone_predictor(layer_0)
|
|
out["prosody_phone"] = prosody_phone
|
|
|
|
if self.use_gr_content_f0:
|
|
content_f0, content_uv = self.content_f0_predictor(layer_1)
|
|
content_f0 = rearrange(content_f0, "... 1 -> ...")
|
|
content_uv = rearrange(content_uv, "... 1 -> ...")
|
|
out["content_f0"] = content_f0
|
|
out["content_uv"] = content_uv
|
|
|
|
if self.vq_num_q_r > 0:
|
|
layer_2 = quantized[2]
|
|
|
|
if self.use_gr_residual_f0:
|
|
res_f0, res_uv = self.res_f0_predictor(layer_2)
|
|
res_f0 = rearrange(res_f0, "... 1 -> ...")
|
|
res_uv = rearrange(res_uv, "... 1 -> ...")
|
|
out["res_f0"] = res_f0
|
|
out["res_uv"] = res_uv
|
|
|
|
if self.use_gr_residual_phone:
|
|
(res_phone,) = self.res_phone_predictor(layer_2)
|
|
out["res_phone"] = res_phone
|
|
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
if self.vq_num_q_r > 0:
|
|
if self.use_random_mask_residual:
|
|
bsz = quantized[2].shape[0]
|
|
res_mask = np.random.choice(
|
|
[0, 1],
|
|
size=bsz,
|
|
p=[
|
|
self.prob_random_mask_residual,
|
|
1 - self.prob_random_mask_residual,
|
|
],
|
|
)
|
|
res_mask = (
|
|
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
|
|
) # (B, 1, 1)
|
|
res_mask = res_mask.to(
|
|
device=quantized[2].device, dtype=quantized[2].dtype
|
|
)
|
|
x = (
|
|
quantized[0].detach()
|
|
+ quantized[1].detach()
|
|
+ quantized[2] * res_mask
|
|
)
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2] * res_mask
|
|
else:
|
|
x = quantized[0].detach() + quantized[1].detach() + quantized[2]
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach() + quantized[2]
|
|
else:
|
|
x = quantized[0].detach() + quantized[1].detach()
|
|
# x = quantized_perturbe[0].detach() + quantized[1].detach()
|
|
|
|
if self.use_gr_x_timbre:
|
|
(x_timbre,) = self.x_timbre_predictor(x)
|
|
out["x_timbre"] = x_timbre
|
|
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
|
|
x = self.model(x)
|
|
out["audio"] = x
|
|
|
|
return out
|
|
|
|
def vq2emb(self, vq, use_residual=True):
|
|
# vq: [num_quantizer, B, T]
|
|
self.quantizer = self.quantizer.eval()
|
|
out = 0
|
|
out += self.quantizer[0].vq2emb(vq[0 : self.vq_num_q_p])
|
|
out += self.quantizer[1].vq2emb(
|
|
vq[self.vq_num_q_p : self.vq_num_q_p + self.vq_num_q_c]
|
|
)
|
|
if self.vq_num_q_r > 0 and use_residual:
|
|
out += self.quantizer[2].vq2emb(vq[self.vq_num_q_p + self.vq_num_q_c :])
|
|
return out
|
|
|
|
def inference(self, x, speaker_embedding):
|
|
style = self.timbre_linear(speaker_embedding).unsqueeze(2) # (B, 2d, 1)
|
|
gamma, beta = style.chunk(2, 1) # (B, d, 1)
|
|
x = x.transpose(1, 2)
|
|
x = self.timbre_norm(x)
|
|
x = x.transpose(1, 2)
|
|
x = x * gamma + beta
|
|
x = self.model(x)
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
"""Remove weight normalization module from all of the layers."""
|
|
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError: # this module didn't have weight norm
|
|
return
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
def apply_weight_norm(self):
|
|
"""Apply weight normalization module from all of the layers."""
|
|
|
|
def _apply_weight_norm(m):
|
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d):
|
|
torch.nn.utils.weight_norm(m)
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
def reset_parameters(self):
|
|
self.apply(init_weights)
|