mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
331 lines
9.3 KiB
Python
331 lines
9.3 KiB
Python
# Copyright (c) 2023 Amphion.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
import math
|
|
import os.path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from munch import Munch
|
|
import json
|
|
|
|
|
|
class AttrDict(dict):
|
|
def __init__(self, *args, **kwargs):
|
|
super(AttrDict, self).__init__(*args, **kwargs)
|
|
self.__dict__ = self
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
def convert_pad_shape(pad_shape):
|
|
l = pad_shape[::-1]
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
return pad_shape
|
|
|
|
|
|
def intersperse(lst, item):
|
|
result = [item] * (len(lst) * 2 + 1)
|
|
result[1::2] = lst
|
|
return result
|
|
|
|
|
|
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
|
"""KL(P||Q)"""
|
|
kl = (logs_q - logs_p) - 0.5
|
|
kl += (
|
|
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
|
)
|
|
return kl
|
|
|
|
|
|
def rand_gumbel(shape):
|
|
"""Sample from the Gumbel distribution, protect from overflows."""
|
|
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
|
return -torch.log(-torch.log(uniform_samples))
|
|
|
|
|
|
def rand_gumbel_like(x):
|
|
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
|
return g
|
|
|
|
|
|
def slice_segments(x, ids_str, segment_size=4):
|
|
ret = torch.zeros_like(x[:, :, :segment_size])
|
|
for i in range(x.size(0)):
|
|
idx_str = ids_str[i]
|
|
idx_end = idx_str + segment_size
|
|
ret[i] = x[i, :, idx_str:idx_end]
|
|
return ret
|
|
|
|
|
|
def slice_segments_audio(x, ids_str, segment_size=4):
|
|
ret = torch.zeros_like(x[:, :segment_size])
|
|
for i in range(x.size(0)):
|
|
idx_str = ids_str[i]
|
|
idx_end = idx_str + segment_size
|
|
ret[i] = x[i, idx_str:idx_end]
|
|
return ret
|
|
|
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
|
b, d, t = x.size()
|
|
if x_lengths is None:
|
|
x_lengths = t
|
|
ids_str_max = x_lengths - segment_size + 1
|
|
ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to(
|
|
dtype=torch.long
|
|
)
|
|
ret = slice_segments(x, ids_str, segment_size)
|
|
return ret, ids_str
|
|
|
|
|
|
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
|
position = torch.arange(length, dtype=torch.float)
|
|
num_timescales = channels // 2
|
|
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
|
num_timescales - 1
|
|
)
|
|
inv_timescales = min_timescale * torch.exp(
|
|
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
|
)
|
|
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
|
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
|
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
|
signal = signal.view(1, channels, length)
|
|
return signal
|
|
|
|
|
|
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
|
b, channels, length = x.size()
|
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
return x + signal.to(dtype=x.dtype, device=x.device)
|
|
|
|
|
|
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
|
b, channels, length = x.size()
|
|
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
|
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
|
|
|
|
|
def subsequent_mask(length):
|
|
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
|
return mask
|
|
|
|
|
|
@torch.jit.script
|
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
|
n_channels_int = n_channels[0]
|
|
in_act = input_a + input_b
|
|
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
|
acts = t_act * s_act
|
|
return acts
|
|
|
|
|
|
def convert_pad_shape(pad_shape):
|
|
l = pad_shape[::-1]
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
return pad_shape
|
|
|
|
|
|
def shift_1d(x):
|
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
|
return x
|
|
|
|
|
|
def sequence_mask(length, max_length=None):
|
|
if max_length is None:
|
|
max_length = length.max()
|
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
|
|
|
|
|
def generate_path(duration, mask):
|
|
"""
|
|
duration: [b, 1, t_x]
|
|
mask: [b, 1, t_y, t_x]
|
|
"""
|
|
device = duration.device
|
|
|
|
b, _, t_y, t_x = mask.shape
|
|
cum_duration = torch.cumsum(duration, -1)
|
|
|
|
cum_duration_flat = cum_duration.view(b * t_x)
|
|
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
|
path = path.view(b, t_x, t_y)
|
|
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
|
path = path.unsqueeze(1).transpose(2, 3) * mask
|
|
return path
|
|
|
|
|
|
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
|
if isinstance(parameters, torch.Tensor):
|
|
parameters = [parameters]
|
|
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
|
norm_type = float(norm_type)
|
|
if clip_value is not None:
|
|
clip_value = float(clip_value)
|
|
|
|
total_norm = 0
|
|
for p in parameters:
|
|
param_norm = p.grad.data.norm(norm_type)
|
|
total_norm += param_norm.item() ** norm_type
|
|
if clip_value is not None:
|
|
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
|
total_norm = total_norm ** (1.0 / norm_type)
|
|
return total_norm
|
|
|
|
|
|
def log_norm(x, mean=-4, std=4, dim=2):
|
|
"""
|
|
normalized log mel -> mel -> norm -> log(norm)
|
|
"""
|
|
x = torch.log(torch.exp(x * std + mean).norm(dim=dim))
|
|
return x
|
|
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
def load_F0_models(path):
|
|
# load F0 model
|
|
from .JDC.model import JDCNet
|
|
|
|
F0_model = JDCNet(num_class=1, seq_len=192)
|
|
if not os.path.exists(path):
|
|
path = hf_hub_download(repo_id="Plachta/JDCnet", filename="bst.t7")
|
|
params = torch.load(path, map_location="cpu")["net"]
|
|
F0_model.load_state_dict(params)
|
|
_ = F0_model.train()
|
|
|
|
return F0_model
|
|
|
|
|
|
# Generators
|
|
from modules.dac.model.dac import Encoder, Decoder
|
|
from .quantize import FAquantizer, FApredictors
|
|
|
|
# Discriminators
|
|
from modules.dac.model.discriminator import Discriminator
|
|
|
|
|
|
def build_model(args):
|
|
encoder = Encoder(
|
|
d_model=args.DAC.encoder_dim,
|
|
strides=args.DAC.encoder_rates,
|
|
d_latent=1024,
|
|
causal=args.causal,
|
|
lstm=args.lstm,
|
|
)
|
|
|
|
quantizer = FAquantizer(
|
|
in_dim=1024,
|
|
n_p_codebooks=1,
|
|
n_c_codebooks=args.n_c_codebooks,
|
|
n_t_codebooks=2,
|
|
n_r_codebooks=3,
|
|
codebook_size=1024,
|
|
codebook_dim=8,
|
|
quantizer_dropout=0.5,
|
|
causal=args.causal,
|
|
separate_prosody_encoder=args.separate_prosody_encoder,
|
|
timbre_norm=args.timbre_norm,
|
|
)
|
|
|
|
fa_predictors = FApredictors(
|
|
in_dim=1024,
|
|
use_gr_content_f0=args.use_gr_content_f0,
|
|
use_gr_prosody_phone=args.use_gr_prosody_phone,
|
|
use_gr_residual_f0=True,
|
|
use_gr_residual_phone=True,
|
|
use_gr_timbre_content=True,
|
|
use_gr_timbre_prosody=args.use_gr_timbre_prosody,
|
|
use_gr_x_timbre=True,
|
|
norm_f0=args.norm_f0,
|
|
timbre_norm=args.timbre_norm,
|
|
use_gr_content_global_f0=args.use_gr_content_global_f0,
|
|
)
|
|
|
|
decoder = Decoder(
|
|
input_channel=1024,
|
|
channels=args.DAC.decoder_dim,
|
|
rates=args.DAC.decoder_rates,
|
|
causal=args.causal,
|
|
lstm=args.lstm,
|
|
)
|
|
|
|
discriminator = Discriminator(
|
|
rates=[],
|
|
periods=[2, 3, 5, 7, 11],
|
|
fft_sizes=[2048, 1024, 512],
|
|
sample_rate=args.DAC.sr,
|
|
bands=[(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)],
|
|
)
|
|
|
|
nets = Munch(
|
|
encoder=encoder,
|
|
quantizer=quantizer,
|
|
decoder=decoder,
|
|
discriminator=discriminator,
|
|
fa_predictors=fa_predictors,
|
|
)
|
|
|
|
return nets
|
|
|
|
|
|
def load_checkpoint(
|
|
model,
|
|
optimizer,
|
|
path,
|
|
load_only_params=True,
|
|
ignore_modules=[],
|
|
is_distributed=False,
|
|
):
|
|
state = torch.load(path, map_location="cpu")
|
|
params = state["net"]
|
|
for key in model:
|
|
if key in params and key not in ignore_modules:
|
|
if not is_distributed:
|
|
# strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix
|
|
for k in list(params[key].keys()):
|
|
if k.startswith("module."):
|
|
params[key][k[len("module.") :]] = params[key][k]
|
|
del params[key][k]
|
|
print("%s loaded" % key)
|
|
model[key].load_state_dict(params[key], strict=True)
|
|
_ = [model[key].eval() for key in model]
|
|
|
|
if not load_only_params:
|
|
epoch = state["epoch"] + 1
|
|
iters = state["iters"]
|
|
optimizer.load_state_dict(state["optimizer"])
|
|
optimizer.load_scheduler_state_dict(state["scheduler"])
|
|
|
|
else:
|
|
epoch = state["epoch"] + 1
|
|
iters = state["iters"]
|
|
|
|
return model, optimizer, epoch, iters
|
|
|
|
|
|
def recursive_munch(d):
|
|
if isinstance(d, dict):
|
|
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
|
elif isinstance(d, list):
|
|
return [recursive_munch(v) for v in d]
|
|
else:
|
|
return d
|