mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
98 lines
3.5 KiB
Python
98 lines
3.5 KiB
Python
# Copyright (c) 2023 Amphion.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import torch
|
|
import random
|
|
|
|
import numpy as np
|
|
|
|
import torchaudio
|
|
import librosa
|
|
from torch.nn import functional as F
|
|
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
from utils.data_utils import *
|
|
from models.codec.codec_dataset import CodecDataset
|
|
|
|
|
|
class FAcodecDataset(torch.utils.data.Dataset):
|
|
def __init__(self, cfg, dataset, is_valid=False):
|
|
"""
|
|
Args:
|
|
cfg: config
|
|
dataset: dataset name
|
|
is_valid: whether to use train or valid dataset
|
|
"""
|
|
self.data_root_dir = cfg.dataset
|
|
self.data_list = []
|
|
# walk through the dataset directory recursively, save all files ends with .wav/.mp3/.opus/.flac/.m4a
|
|
for root, _, files in os.walk(self.data_root_dir):
|
|
for file in files:
|
|
if file.endswith((".wav", ".mp3", ".opus", ".flac", ".m4a")):
|
|
self.data_list.append(os.path.join(root, file))
|
|
self.sr = cfg.preprocess_params.sr
|
|
self.duration_range = cfg.preprocess_params.duration_range
|
|
self.to_mel = torchaudio.transforms.MelSpectrogram(
|
|
n_mels=cfg.preprocess_params.spect_params.n_mels,
|
|
n_fft=cfg.preprocess_params.spect_params.n_fft,
|
|
win_length=cfg.preprocess_params.spect_params.win_length,
|
|
hop_length=cfg.preprocess_params.spect_params.hop_length,
|
|
)
|
|
self.mean, self.std = -4, 4
|
|
|
|
def preprocess(self, wave):
|
|
wave_tensor = (
|
|
torch.from_numpy(wave).float() if isinstance(wave, np.ndarray) else wave
|
|
)
|
|
mel_tensor = self.to_mel(wave_tensor)
|
|
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
|
|
return mel_tensor
|
|
|
|
def __len__(self):
|
|
# return len(self.data_list)
|
|
return len(self.data_list) # return a fixed number for testing
|
|
|
|
def __getitem__(self, index):
|
|
wave, _ = librosa.load(self.data_list[index], sr=self.sr)
|
|
wave = np.random.randn(self.sr * random.randint(*self.duration_range))
|
|
wave = wave / np.max(np.abs(wave))
|
|
mel = self.preprocess(wave).squeeze(0)
|
|
wave = torch.from_numpy(wave).float()
|
|
return wave, mel
|
|
|
|
|
|
class FAcodecCollator(object):
|
|
"""Zero-pads model inputs and targets based on number of frames per step"""
|
|
|
|
def __init__(self, cfg):
|
|
self.cfg = cfg
|
|
|
|
def __call__(self, batch):
|
|
# batch[0] = wave, mel, text, f0, speakerid
|
|
batch_size = len(batch)
|
|
|
|
# sort by mel length
|
|
lengths = [b[1].shape[1] for b in batch]
|
|
batch_indexes = np.argsort(lengths)[::-1]
|
|
batch = [batch[bid] for bid in batch_indexes]
|
|
|
|
nmels = batch[0][1].size(0)
|
|
max_mel_length = max([b[1].shape[1] for b in batch])
|
|
max_wave_length = max([b[0].size(0) for b in batch])
|
|
|
|
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10
|
|
waves = torch.zeros((batch_size, max_wave_length)).float()
|
|
|
|
mel_lengths = torch.zeros(batch_size).long()
|
|
wave_lengths = torch.zeros(batch_size).long()
|
|
|
|
for bid, (wave, mel) in enumerate(batch):
|
|
mel_size = mel.size(1)
|
|
mels[bid, :, :mel_size] = mel
|
|
waves[bid, : wave.size(0)] = wave
|
|
mel_lengths[bid] = mel_size
|
|
wave_lengths[bid] = wave.size(0)
|
|
|
|
return waves, mels, wave_lengths, mel_lengths
|