mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
126 lines
4.4 KiB
Python
126 lines
4.4 KiB
Python
# Copyright (c) 2023 Amphion.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import math
|
|
import random
|
|
|
|
from torch.utils.data import ConcatDataset, Dataset
|
|
from torch.utils.data.sampler import (
|
|
BatchSampler,
|
|
RandomSampler,
|
|
Sampler,
|
|
SequentialSampler,
|
|
)
|
|
|
|
|
|
class ScheduledSampler(Sampler):
|
|
"""A sampler that samples data from a given concat-dataset.
|
|
|
|
Args:
|
|
concat_dataset (ConcatDataset): a concatenated dataset consisting of all datasets
|
|
batch_size (int): batch size
|
|
holistic_shuffle (bool): whether to shuffle the whole dataset or not
|
|
logger (logging.Logger): logger to print warning message
|
|
|
|
Usage:
|
|
For cfg.train.batch_size = 3, cfg.train.holistic_shuffle = False, cfg.train.drop_last = True:
|
|
>>> list(ScheduledSampler(ConcatDataset([0, 1, 2], [3, 4, 5], [6, 7, 8]])))
|
|
[3, 4, 5, 0, 1, 2, 6, 7, 8]
|
|
"""
|
|
|
|
def __init__(
|
|
self, concat_dataset, batch_size, holistic_shuffle, logger=None, type="train"
|
|
):
|
|
if not isinstance(concat_dataset, ConcatDataset):
|
|
raise ValueError(
|
|
"concat_dataset must be an instance of ConcatDataset, but got {}".format(
|
|
type(concat_dataset)
|
|
)
|
|
)
|
|
if not isinstance(batch_size, int):
|
|
raise ValueError(
|
|
"batch_size must be an integer, but got {}".format(type(batch_size))
|
|
)
|
|
if not isinstance(holistic_shuffle, bool):
|
|
raise ValueError(
|
|
"holistic_shuffle must be a boolean, but got {}".format(
|
|
type(holistic_shuffle)
|
|
)
|
|
)
|
|
|
|
self.concat_dataset = concat_dataset
|
|
self.batch_size = batch_size
|
|
self.holistic_shuffle = holistic_shuffle
|
|
|
|
affected_dataset_name = []
|
|
affected_dataset_len = []
|
|
for dataset in concat_dataset.datasets:
|
|
dataset_len = len(dataset)
|
|
dataset_name = dataset.get_dataset_name()
|
|
if dataset_len < batch_size:
|
|
affected_dataset_name.append(dataset_name)
|
|
affected_dataset_len.append(dataset_len)
|
|
|
|
self.type = type
|
|
for dataset_name, dataset_len in zip(
|
|
affected_dataset_name, affected_dataset_len
|
|
):
|
|
if not type == "valid":
|
|
logger.warning(
|
|
"The {} dataset {} has a length of {}, which is smaller than the batch size {}. This may cause unexpected behavior.".format(
|
|
type, dataset_name, dataset_len, batch_size
|
|
)
|
|
)
|
|
|
|
def __len__(self):
|
|
# the number of batches with drop last
|
|
num_of_batches = sum(
|
|
[
|
|
math.floor(len(dataset) / self.batch_size)
|
|
for dataset in self.concat_dataset.datasets
|
|
]
|
|
)
|
|
return num_of_batches * self.batch_size
|
|
|
|
def __iter__(self):
|
|
iters = []
|
|
for dataset in self.concat_dataset.datasets:
|
|
iters.append(
|
|
SequentialSampler(dataset).__iter__()
|
|
if self.holistic_shuffle
|
|
else RandomSampler(dataset).__iter__()
|
|
)
|
|
init_indices = [0] + self.concat_dataset.cumulative_sizes[:-1]
|
|
output_batches = []
|
|
for dataset_idx in range(len(self.concat_dataset.datasets)):
|
|
cur_batch = []
|
|
for idx in iters[dataset_idx]:
|
|
cur_batch.append(idx + init_indices[dataset_idx])
|
|
if len(cur_batch) == self.batch_size:
|
|
output_batches.append(cur_batch)
|
|
cur_batch = []
|
|
if self.type == "valid" and len(cur_batch) > 0:
|
|
output_batches.append(cur_batch)
|
|
cur_batch = []
|
|
# force drop last in training
|
|
random.shuffle(output_batches)
|
|
output_indices = [item for sublist in output_batches for item in sublist]
|
|
return iter(output_indices)
|
|
|
|
|
|
def build_samplers(concat_dataset: Dataset, cfg, logger, type):
|
|
sampler = ScheduledSampler(
|
|
concat_dataset,
|
|
cfg.train.batch_size,
|
|
cfg.train.sampler.holistic_shuffle,
|
|
logger,
|
|
type,
|
|
)
|
|
batch_sampler = BatchSampler(
|
|
sampler,
|
|
cfg.train.batch_size,
|
|
cfg.train.sampler.drop_last if not type == "valid" else False,
|
|
)
|
|
return sampler, batch_sampler
|