mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
881 lines
31 KiB
Python
881 lines
31 KiB
Python
# Copyright (c) 2024 Amphion.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
import numpy as np
|
|
import scipy
|
|
import torch
|
|
from torch import nn, view_as_real, view_as_complex
|
|
from torch import nn
|
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
|
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz
|
|
import librosa
|
|
|
|
|
|
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor:
|
|
"""
|
|
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor.
|
|
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7.
|
|
|
|
Returns:
|
|
Tensor: Element-wise logarithm of the input tensor with clipping applied.
|
|
"""
|
|
return torch.log(torch.clip(x, min=clip_val))
|
|
|
|
|
|
def symlog(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.sign(x) * torch.log1p(x.abs())
|
|
|
|
|
|
def symexp(x: torch.Tensor) -> torch.Tensor:
|
|
return torch.sign(x) * (torch.exp(x.abs()) - 1)
|
|
|
|
|
|
class STFT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_fft: int,
|
|
hop_length: int,
|
|
win_length: int,
|
|
center=True,
|
|
):
|
|
super().__init__()
|
|
self.center = center
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
window = torch.hann_window(win_length)
|
|
self.register_buffer("window", window)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
# x: (B, T * hop_length)
|
|
|
|
if not self.center:
|
|
pad = self.win_length - self.hop_length
|
|
x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect")
|
|
|
|
stft_spec = torch.stft(
|
|
x,
|
|
self.n_fft,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
window=self.window,
|
|
center=self.center,
|
|
return_complex=False,
|
|
) # (B, n_fft // 2 + 1, T, 2)
|
|
|
|
rea = stft_spec[:, :, :, 0] # (B, n_fft // 2 + 1, T, 2)
|
|
imag = stft_spec[:, :, :, 1] # (B, n_fft // 2 + 1, T, 2)
|
|
|
|
log_mag = torch.log(
|
|
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5
|
|
) # (B, n_fft // 2 + 1, T)
|
|
phase = torch.atan2(imag, rea) # (B, n_fft // 2 + 1, T)
|
|
|
|
return log_mag, phase
|
|
|
|
|
|
class ISTFT(nn.Module):
|
|
"""
|
|
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with
|
|
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges.
|
|
See issue: https://github.com/pytorch/pytorch/issues/62323
|
|
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs.
|
|
The NOLA constraint is met as we trim padded samples anyway.
|
|
|
|
Args:
|
|
n_fft (int): Size of Fourier transform.
|
|
hop_length (int): The distance between neighboring sliding window frames.
|
|
win_length (int): The size of window frame and STFT filter.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
"""
|
|
|
|
def __init__(
|
|
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"
|
|
):
|
|
super().__init__()
|
|
if padding not in ["center", "same"]:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
self.padding = padding
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
window = torch.hann_window(win_length)
|
|
self.register_buffer("window", window)
|
|
|
|
def forward(self, spec: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram.
|
|
|
|
Args:
|
|
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size,
|
|
N is the number of frequency bins, and T is the number of time frames.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal.
|
|
"""
|
|
if self.padding == "center":
|
|
# Fallback to pytorch native implementation
|
|
return torch.istft(
|
|
spec,
|
|
self.n_fft,
|
|
self.hop_length,
|
|
self.win_length,
|
|
self.window,
|
|
center=True,
|
|
)
|
|
elif self.padding == "same":
|
|
pad = (self.win_length - self.hop_length) // 2
|
|
else:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
|
|
assert spec.dim() == 3, "Expected a 3D tensor as input"
|
|
B, N, T = spec.shape
|
|
|
|
# Inverse FFT
|
|
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward")
|
|
ifft = ifft * self.window[None, :, None]
|
|
|
|
# Overlap and Add
|
|
output_size = (T - 1) * self.hop_length + self.win_length
|
|
y = torch.nn.functional.fold(
|
|
ifft,
|
|
output_size=(1, output_size),
|
|
kernel_size=(1, self.win_length),
|
|
stride=(1, self.hop_length),
|
|
)[:, 0, 0, pad:-pad]
|
|
|
|
# Window envelope
|
|
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2)
|
|
window_envelope = torch.nn.functional.fold(
|
|
window_sq,
|
|
output_size=(1, output_size),
|
|
kernel_size=(1, self.win_length),
|
|
stride=(1, self.hop_length),
|
|
).squeeze()[pad:-pad]
|
|
|
|
# Normalize
|
|
assert (window_envelope > 1e-11).all()
|
|
y = y / window_envelope
|
|
|
|
return y
|
|
|
|
|
|
class MDCT(nn.Module):
|
|
"""
|
|
Modified Discrete Cosine Transform (MDCT) module.
|
|
|
|
Args:
|
|
frame_len (int): Length of the MDCT frame.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
"""
|
|
|
|
def __init__(self, frame_len: int, padding: str = "same"):
|
|
super().__init__()
|
|
if padding not in ["center", "same"]:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
self.padding = padding
|
|
self.frame_len = frame_len
|
|
N = frame_len // 2
|
|
n0 = (N + 1) / 2
|
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
|
self.register_buffer("window", window)
|
|
|
|
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len)
|
|
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N)
|
|
# view_as_real: NCCL Backend does not support ComplexFloat data type
|
|
# https://github.com/pytorch/pytorch/issues/71613
|
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio.
|
|
|
|
Args:
|
|
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size
|
|
and T is the length of the audio.
|
|
|
|
Returns:
|
|
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames
|
|
and N is the number of frequency bins.
|
|
"""
|
|
if self.padding == "center":
|
|
audio = torch.nn.functional.pad(
|
|
audio, (self.frame_len // 2, self.frame_len // 2)
|
|
)
|
|
elif self.padding == "same":
|
|
# hop_length is 1/2 frame_len
|
|
audio = torch.nn.functional.pad(
|
|
audio, (self.frame_len // 4, self.frame_len // 4)
|
|
)
|
|
else:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
|
|
x = audio.unfold(-1, self.frame_len, self.frame_len // 2)
|
|
N = self.frame_len // 2
|
|
x = x * self.window.expand(x.shape)
|
|
X = torch.fft.fft(
|
|
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1
|
|
)[..., :N]
|
|
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N)
|
|
return torch.real(res) * np.sqrt(2)
|
|
|
|
|
|
class IMDCT(nn.Module):
|
|
"""
|
|
Inverse Modified Discrete Cosine Transform (IMDCT) module.
|
|
|
|
Args:
|
|
frame_len (int): Length of the MDCT frame.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
"""
|
|
|
|
def __init__(self, frame_len: int, padding: str = "same"):
|
|
super().__init__()
|
|
if padding not in ["center", "same"]:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
self.padding = padding
|
|
self.frame_len = frame_len
|
|
N = frame_len // 2
|
|
n0 = (N + 1) / 2
|
|
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float()
|
|
self.register_buffer("window", window)
|
|
|
|
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N)
|
|
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2))
|
|
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle))
|
|
self.register_buffer("post_twiddle", view_as_real(post_twiddle))
|
|
|
|
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients.
|
|
|
|
Args:
|
|
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size,
|
|
L is the number of frames, and N is the number of frequency bins.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio.
|
|
"""
|
|
B, L, N = X.shape
|
|
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device)
|
|
Y[..., :N] = X
|
|
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,)))
|
|
y = torch.fft.ifft(
|
|
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1
|
|
)
|
|
y = (
|
|
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape))
|
|
* np.sqrt(N)
|
|
* np.sqrt(2)
|
|
)
|
|
result = y * self.window.expand(y.shape)
|
|
output_size = (1, (L + 1) * N)
|
|
audio = torch.nn.functional.fold(
|
|
result.transpose(1, 2),
|
|
output_size=output_size,
|
|
kernel_size=(1, self.frame_len),
|
|
stride=(1, self.frame_len // 2),
|
|
)[:, 0, 0, :]
|
|
|
|
if self.padding == "center":
|
|
pad = self.frame_len // 2
|
|
elif self.padding == "same":
|
|
pad = self.frame_len // 4
|
|
else:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
|
|
audio = audio[:, pad:-pad]
|
|
return audio
|
|
|
|
|
|
class FourierHead(nn.Module):
|
|
"""Base class for inverse fourier modules."""
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
|
L is the sequence length, and H denotes the model dimension.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
|
"""
|
|
raise NotImplementedError("Subclasses must implement the forward method.")
|
|
|
|
|
|
class ISTFTHead(FourierHead):
|
|
"""
|
|
ISTFT Head module for predicting STFT complex coefficients.
|
|
|
|
Args:
|
|
dim (int): Hidden dimension of the model.
|
|
n_fft (int): Size of Fourier transform.
|
|
hop_length (int): The distance between neighboring sliding window frames, which should align with
|
|
the resolution of the input features.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
"""
|
|
|
|
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"):
|
|
super().__init__()
|
|
out_dim = n_fft + 2
|
|
self.out = torch.nn.Linear(dim, out_dim)
|
|
self.istft = ISTFT(
|
|
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass of the ISTFTHead module.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
|
L is the sequence length, and H denotes the model dimension.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
|
"""
|
|
x = self.out(x).transpose(1, 2)
|
|
mag, p = x.chunk(2, dim=1)
|
|
mag = torch.exp(mag)
|
|
mag = torch.clip(
|
|
mag, max=1e2
|
|
) # safeguard to prevent excessively large magnitudes
|
|
# wrapping happens here. These two lines produce real and imaginary value
|
|
x = torch.cos(p)
|
|
y = torch.sin(p)
|
|
# recalculating phase here does not produce anything new
|
|
# only costs time
|
|
# phase = torch.atan2(y, x)
|
|
# S = mag * torch.exp(phase * 1j)
|
|
# better directly produce the complex value
|
|
S = mag * (x + 1j * y)
|
|
audio = self.istft(S)
|
|
return audio
|
|
|
|
|
|
class IMDCTSymExpHead(FourierHead):
|
|
"""
|
|
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function
|
|
|
|
Args:
|
|
dim (int): Hidden dimension of the model.
|
|
mdct_frame_len (int): Length of the MDCT frame.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized
|
|
based on perceptual scaling. Defaults to None.
|
|
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
mdct_frame_len: int,
|
|
padding: str = "same",
|
|
sample_rate: Optional[int] = None,
|
|
clip_audio: bool = False,
|
|
):
|
|
super().__init__()
|
|
out_dim = mdct_frame_len // 2
|
|
self.out = nn.Linear(dim, out_dim)
|
|
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
|
self.clip_audio = clip_audio
|
|
|
|
if sample_rate is not None:
|
|
# optionally init the last layer following mel-scale
|
|
m_max = _hz_to_mel(sample_rate // 2)
|
|
m_pts = torch.linspace(0, m_max, out_dim)
|
|
f_pts = _mel_to_hz(m_pts)
|
|
scale = 1 - (f_pts / f_pts.max())
|
|
|
|
with torch.no_grad():
|
|
self.out.weight.mul_(scale.view(-1, 1))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass of the IMDCTSymExpHead module.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
|
L is the sequence length, and H denotes the model dimension.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
|
"""
|
|
x = self.out(x)
|
|
x = symexp(x)
|
|
x = torch.clip(
|
|
x, min=-1e2, max=1e2
|
|
) # safeguard to prevent excessively large magnitudes
|
|
audio = self.imdct(x)
|
|
if self.clip_audio:
|
|
audio = torch.clip(x, min=-1.0, max=1.0)
|
|
|
|
return audio
|
|
|
|
|
|
class IMDCTCosHead(FourierHead):
|
|
"""
|
|
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p)
|
|
|
|
Args:
|
|
dim (int): Hidden dimension of the model.
|
|
mdct_frame_len (int): Length of the MDCT frame.
|
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same".
|
|
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
mdct_frame_len: int,
|
|
padding: str = "same",
|
|
clip_audio: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.clip_audio = clip_audio
|
|
self.out = nn.Linear(dim, mdct_frame_len)
|
|
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass of the IMDCTCosHead module.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size,
|
|
L is the sequence length, and H denotes the model dimension.
|
|
|
|
Returns:
|
|
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal.
|
|
"""
|
|
x = self.out(x)
|
|
m, p = x.chunk(2, dim=2)
|
|
m = torch.exp(m).clip(
|
|
max=1e2
|
|
) # safeguard to prevent excessively large magnitudes
|
|
audio = self.imdct(m * torch.cos(p))
|
|
if self.clip_audio:
|
|
audio = torch.clip(x, min=-1.0, max=1.0)
|
|
return audio
|
|
|
|
|
|
class ConvNeXtBlock(nn.Module):
|
|
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
intermediate_dim (int): Dimensionality of the intermediate layer.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional LayerNorm. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
layer_scale_init_value: float,
|
|
adanorm_num_embeddings: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.dwconv = nn.Conv1d(
|
|
dim, dim, kernel_size=7, padding=3, groups=dim
|
|
) # depthwise conv
|
|
self.adanorm = adanorm_num_embeddings is not None
|
|
if adanorm_num_embeddings:
|
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.pwconv1 = nn.Linear(
|
|
dim, intermediate_dim
|
|
) # pointwise/1x1 convs, implemented with linear layers
|
|
self.act = nn.GELU()
|
|
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
|
self.gamma = (
|
|
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
|
|
if layer_scale_init_value > 0
|
|
else None
|
|
)
|
|
|
|
def forward(
|
|
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None
|
|
) -> torch.Tensor:
|
|
residual = x
|
|
x = self.dwconv(x)
|
|
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C)
|
|
if self.adanorm:
|
|
assert cond_embedding_id is not None
|
|
x = self.norm(x, cond_embedding_id)
|
|
else:
|
|
x = self.norm(x)
|
|
x = self.pwconv1(x)
|
|
x = self.act(x)
|
|
x = self.pwconv2(x)
|
|
if self.gamma is not None:
|
|
x = self.gamma * x
|
|
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T)
|
|
|
|
x = residual + x
|
|
return x
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
"""
|
|
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes
|
|
|
|
Args:
|
|
num_embeddings (int): Number of embeddings.
|
|
embedding_dim (int): Dimension of the embeddings.
|
|
"""
|
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.dim = embedding_dim
|
|
self.scale = nn.Embedding(
|
|
num_embeddings=num_embeddings, embedding_dim=embedding_dim
|
|
)
|
|
self.shift = nn.Embedding(
|
|
num_embeddings=num_embeddings, embedding_dim=embedding_dim
|
|
)
|
|
torch.nn.init.ones_(self.scale.weight)
|
|
torch.nn.init.zeros_(self.shift.weight)
|
|
|
|
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor:
|
|
scale = self.scale(cond_embedding_id)
|
|
shift = self.shift(cond_embedding_id)
|
|
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps)
|
|
x = x * scale + shift
|
|
return x
|
|
|
|
|
|
class ResBlock1(nn.Module):
|
|
"""
|
|
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions,
|
|
but without upsampling layers.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3.
|
|
dilation (tuple[int], optional): Dilation factors for the dilated convolutions.
|
|
Defaults to (1, 3, 5).
|
|
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function.
|
|
Defaults to 0.1.
|
|
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling.
|
|
Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
kernel_size: int = 3,
|
|
dilation: Tuple[int, int, int] = (1, 3, 5),
|
|
lrelu_slope: float = 0.1,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
):
|
|
super().__init__()
|
|
self.lrelu_slope = lrelu_slope
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=self.get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=self.get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=self.get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
weight_norm(
|
|
nn.Conv1d(
|
|
dim,
|
|
dim,
|
|
kernel_size,
|
|
1,
|
|
dilation=1,
|
|
padding=self.get_padding(kernel_size, 1),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.gamma = nn.ParameterList(
|
|
[
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
(
|
|
nn.Parameter(
|
|
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True
|
|
)
|
|
if layer_scale_init_value is not None
|
|
else None
|
|
),
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma):
|
|
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope)
|
|
xt = c1(xt)
|
|
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope)
|
|
xt = c2(xt)
|
|
if gamma is not None:
|
|
xt = gamma * xt
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
@staticmethod
|
|
def get_padding(kernel_size: int, dilation: int = 1) -> int:
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
class Backbone(nn.Module):
|
|
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers."""
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size,
|
|
C denotes output features, and L is the sequence length.
|
|
|
|
Returns:
|
|
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length,
|
|
and H denotes the model dimension.
|
|
"""
|
|
raise NotImplementedError("Subclasses must implement the forward method.")
|
|
|
|
|
|
class VocosBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock.
|
|
num_layers (int): Number of ConvNeXtBlock layers.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`.
|
|
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm.
|
|
None means non-conditional model. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels: int,
|
|
dim: int,
|
|
intermediate_dim: int,
|
|
num_layers: int,
|
|
layer_scale_init_value: Optional[float] = None,
|
|
adanorm_num_embeddings: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3)
|
|
self.adanorm = adanorm_num_embeddings is not None
|
|
if adanorm_num_embeddings:
|
|
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6)
|
|
else:
|
|
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_layers
|
|
self.convnext = nn.ModuleList(
|
|
[
|
|
ConvNeXtBlock(
|
|
dim=dim,
|
|
intermediate_dim=intermediate_dim,
|
|
layer_scale_init_value=layer_scale_init_value,
|
|
adanorm_num_embeddings=adanorm_num_embeddings,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
|
nn.init.trunc_normal_(m.weight, std=0.02)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
bandwidth_id = kwargs.get("bandwidth_id", None)
|
|
x = self.embed(x)
|
|
if self.adanorm:
|
|
assert bandwidth_id is not None
|
|
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id)
|
|
else:
|
|
x = self.norm(x.transpose(1, 2))
|
|
x = x.transpose(1, 2)
|
|
for conv_block in self.convnext:
|
|
x = conv_block(x, cond_embedding_id=bandwidth_id)
|
|
x = self.final_layer_norm(x.transpose(1, 2))
|
|
return x
|
|
|
|
|
|
class VocosResNetBackbone(Backbone):
|
|
"""
|
|
Vocos backbone module built with ResBlocks.
|
|
|
|
Args:
|
|
input_channels (int): Number of input features channels.
|
|
dim (int): Hidden dimension of the model.
|
|
num_blocks (int): Number of ResBlock1 blocks.
|
|
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels,
|
|
dim,
|
|
num_blocks,
|
|
layer_scale_init_value=None,
|
|
):
|
|
super().__init__()
|
|
self.input_channels = input_channels
|
|
self.embed = weight_norm(
|
|
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1)
|
|
)
|
|
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3
|
|
self.resnet = nn.Sequential(
|
|
*[
|
|
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value)
|
|
for _ in range(num_blocks)
|
|
]
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
x = self.embed(x)
|
|
x = self.resnet(x)
|
|
x = x.transpose(1, 2)
|
|
return x
|
|
|
|
|
|
class Vocos(nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_channels: int = 256,
|
|
dim: int = 384,
|
|
intermediate_dim: int = 1152,
|
|
num_layers: int = 8,
|
|
n_fft: int = 800,
|
|
hop_size: int = 200,
|
|
padding: str = "same",
|
|
adanorm_num_embeddings=None,
|
|
cfg=None,
|
|
):
|
|
super().__init__()
|
|
|
|
input_channels = (
|
|
cfg.input_channels
|
|
if cfg is not None and hasattr(cfg, "input_channels")
|
|
else input_channels
|
|
)
|
|
dim = cfg.dim if cfg is not None and hasattr(cfg, "dim") else dim
|
|
intermediate_dim = (
|
|
cfg.intermediate_dim
|
|
if cfg is not None and hasattr(cfg, "intermediate_dim")
|
|
else intermediate_dim
|
|
)
|
|
num_layers = (
|
|
cfg.num_layers
|
|
if cfg is not None and hasattr(cfg, "num_layers")
|
|
else num_layers
|
|
)
|
|
adanorm_num_embeddings = (
|
|
cfg.adanorm_num_embeddings
|
|
if cfg is not None and hasattr(cfg, "adanorm_num_embeddings")
|
|
else adanorm_num_embeddings
|
|
)
|
|
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft
|
|
hop_size = (
|
|
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size
|
|
)
|
|
padding = (
|
|
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding
|
|
)
|
|
|
|
self.backbone = VocosBackbone(
|
|
input_channels=input_channels,
|
|
dim=dim,
|
|
intermediate_dim=intermediate_dim,
|
|
num_layers=num_layers,
|
|
adanorm_num_embeddings=adanorm_num_embeddings,
|
|
)
|
|
self.head = ISTFTHead(dim, n_fft, hop_size, padding)
|
|
|
|
def forward(self, x):
|
|
x = self.backbone(x)
|
|
x = self.head(x)
|
|
|
|
return x[:, None, :]
|