mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 02:10:23 +08:00
* Add stream_return switch to get wavs from yield * Add more_segment_before arg for more segmenting. more_segment_before is a int, for token_index < more_segment_before, more segmenting will be applied. 0: no effect; 80 is recommended for better first-wav-latency * Uncomment silence insertion * fix: rename quick streaming tokens argument * fix: rename quick streaming tokens argument * fix: Add a wrapper for the yield function. It will not return a generator in normal condition.
544 lines
24 KiB
Python
544 lines
24 KiB
Python
# -*- coding: utf-8 -*-
|
||
import os
|
||
import traceback
|
||
import re
|
||
from typing import List, Union, overload
|
||
import warnings
|
||
from indextts.utils.common import tokenize_by_CJK_char, de_tokenized_by_CJK_char
|
||
from sentencepiece import SentencePieceProcessor
|
||
|
||
|
||
class TextNormalizer:
|
||
def __init__(self):
|
||
self.zh_normalizer = None
|
||
self.en_normalizer = None
|
||
self.char_rep_map = {
|
||
":": ",",
|
||
";": ",",
|
||
";": ",",
|
||
",": ",",
|
||
"。": ".",
|
||
"!": "!",
|
||
"?": "?",
|
||
"\n": " ",
|
||
"·": "-",
|
||
"、": ",",
|
||
"...": "…",
|
||
",,,": "…",
|
||
",,,": "…",
|
||
"……": "…",
|
||
"“": "'",
|
||
"”": "'",
|
||
'"': "'",
|
||
"‘": "'",
|
||
"’": "'",
|
||
"(": "'",
|
||
")": "'",
|
||
"(": "'",
|
||
")": "'",
|
||
"《": "'",
|
||
"》": "'",
|
||
"【": "'",
|
||
"】": "'",
|
||
"[": "'",
|
||
"]": "'",
|
||
"—": "-",
|
||
"~": "-",
|
||
"~": "-",
|
||
"「": "'",
|
||
"」": "'",
|
||
":": ",",
|
||
}
|
||
self.zh_char_rep_map = {
|
||
"$": ".",
|
||
**self.char_rep_map,
|
||
}
|
||
|
||
def match_email(self, email):
|
||
# 正则表达式匹配邮箱格式:数字英文@数字英文.英文
|
||
pattern = r"^[a-zA-Z0-9]+@[a-zA-Z0-9]+\.[a-zA-Z]+$"
|
||
return re.match(pattern, email) is not None
|
||
|
||
PINYIN_TONE_PATTERN = r"(?<![a-z])((?:[bpmfdtnlgkhjqxzcsryw]|[zcs]h)?(?:[aeiouüv]|[ae]i|u[aio]|ao|ou|i[aue]|[uüv]e|[uvü]ang?|uai|[aeiuv]n|[aeio]ng|ia[no]|i[ao]ng)|ng|er)([1-5])"
|
||
"""
|
||
匹配拼音声调格式:pinyin+数字,声调1-5,5表示轻声
|
||
例如:xuan4, jve2, ying1, zhong4, shang5
|
||
不匹配:beta1, voice2
|
||
"""
|
||
NAME_PATTERN = r"[\u4e00-\u9fff]+(?:[-·—][\u4e00-\u9fff]+){1,2}"
|
||
"""
|
||
匹配人名,格式:中文·中文,中文·中文-中文
|
||
例如:克里斯托弗·诺兰,约瑟夫·高登-莱维特
|
||
"""
|
||
|
||
# 匹配常见英语缩写 's,仅用于替换为 is,不匹配所有 's
|
||
ENGLISH_CONTRACTION_PATTERN = r"(what|where|who|which|how|t?here|it|s?he|that|this)'s"
|
||
|
||
|
||
def use_chinese(self, s):
|
||
has_chinese = bool(re.search(r"[\u4e00-\u9fff]", s))
|
||
has_alpha = bool(re.search(r"[a-zA-Z]", s))
|
||
is_email = self.match_email(s)
|
||
if has_chinese or not has_alpha or is_email:
|
||
return True
|
||
|
||
has_pinyin = bool(re.search(TextNormalizer.PINYIN_TONE_PATTERN, s, re.IGNORECASE))
|
||
return has_pinyin
|
||
|
||
def load(self):
|
||
# print(os.path.join(os.path.dirname(os.path.abspath(__file__)), ".."))
|
||
# sys.path.append(model_dir)
|
||
import platform
|
||
if self.zh_normalizer is not None and self.en_normalizer is not None:
|
||
return
|
||
if platform.system() != "Linux": # Mac and Windows
|
||
from wetext import Normalizer
|
||
|
||
self.zh_normalizer = Normalizer(remove_erhua=False, lang="zh", operator="tn")
|
||
self.en_normalizer = Normalizer(lang="en", operator="tn")
|
||
else:
|
||
from tn.chinese.normalizer import Normalizer as NormalizerZh
|
||
from tn.english.normalizer import Normalizer as NormalizerEn
|
||
# use new cache dir for build tagger rules with disable remove_interjections and remove_erhua
|
||
cache_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tagger_cache")
|
||
if not os.path.exists(cache_dir):
|
||
os.makedirs(cache_dir)
|
||
with open(os.path.join(cache_dir, ".gitignore"), "w") as f:
|
||
f.write("*\n")
|
||
self.zh_normalizer = NormalizerZh(
|
||
cache_dir=cache_dir, remove_interjections=False, remove_erhua=False, overwrite_cache=False
|
||
)
|
||
self.en_normalizer = NormalizerEn(overwrite_cache=False)
|
||
|
||
def normalize(self, text: str) -> str:
|
||
if not self.zh_normalizer or not self.en_normalizer:
|
||
print("Error, text normalizer is not initialized !!!")
|
||
return ""
|
||
if self.use_chinese(text):
|
||
text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
|
||
replaced_text, pinyin_list = self.save_pinyin_tones(text.rstrip())
|
||
|
||
replaced_text, original_name_list = self.save_names(replaced_text)
|
||
try:
|
||
result = self.zh_normalizer.normalize(replaced_text)
|
||
except Exception:
|
||
result = ""
|
||
print(traceback.format_exc())
|
||
# 恢复人名
|
||
result = self.restore_names(result, original_name_list)
|
||
# 恢复拼音声调
|
||
result = self.restore_pinyin_tones(result, pinyin_list)
|
||
pattern = re.compile("|".join(re.escape(p) for p in self.zh_char_rep_map.keys()))
|
||
result = pattern.sub(lambda x: self.zh_char_rep_map[x.group()], result)
|
||
else:
|
||
try:
|
||
text = re.sub(TextNormalizer.ENGLISH_CONTRACTION_PATTERN, r"\1 is", text, flags=re.IGNORECASE)
|
||
result = self.en_normalizer.normalize(text)
|
||
except Exception:
|
||
result = text
|
||
print(traceback.format_exc())
|
||
pattern = re.compile("|".join(re.escape(p) for p in self.char_rep_map.keys()))
|
||
result = pattern.sub(lambda x: self.char_rep_map[x.group()], result)
|
||
return result
|
||
|
||
def correct_pinyin(self, pinyin: str):
|
||
"""
|
||
将 jqx 的韵母为 u/ü 的拼音转换为 v
|
||
如:ju -> jv , que -> qve, xün -> xvn
|
||
"""
|
||
if pinyin[0] not in "jqxJQX":
|
||
return pinyin
|
||
# 匹配 jqx 的韵母为 u/ü 的拼音
|
||
pattern = r"([jqx])[uü](n|e|an)*(\d)"
|
||
repl = r"\g<1>v\g<2>\g<3>"
|
||
pinyin = re.sub(pattern, repl, pinyin, flags=re.IGNORECASE)
|
||
return pinyin.upper()
|
||
|
||
def save_names(self, original_text):
|
||
"""
|
||
替换人名为占位符 <n_a>、 <n_b>, ...
|
||
例如:克里斯托弗·诺兰 -> <n_a>
|
||
"""
|
||
# 人名
|
||
name_pattern = re.compile(TextNormalizer.NAME_PATTERN, re.IGNORECASE)
|
||
original_name_list = re.findall(name_pattern, original_text)
|
||
if len(original_name_list) == 0:
|
||
return (original_text, None)
|
||
original_name_list = list(set("".join(n) for n in original_name_list))
|
||
transformed_text = original_text
|
||
# 替换占位符 <n_a>、 <n_b>, ...
|
||
for i, name in enumerate(original_name_list):
|
||
number = chr(ord("a") + i)
|
||
transformed_text = transformed_text.replace(name, f"<n_{number}>")
|
||
|
||
return transformed_text, original_name_list
|
||
|
||
def restore_names(self, normalized_text, original_name_list):
|
||
"""
|
||
恢复人名为原来的文字
|
||
例如:<n_a> -> original_name_list[0]
|
||
"""
|
||
if not original_name_list or len(original_name_list) == 0:
|
||
return normalized_text
|
||
|
||
transformed_text = normalized_text
|
||
# 替换为占位符 <n_a>、 <n_b>, ...
|
||
for i, name in enumerate(original_name_list):
|
||
number = chr(ord("a") + i)
|
||
transformed_text = transformed_text.replace(f"<n_{number}>", name)
|
||
return transformed_text
|
||
|
||
def save_pinyin_tones(self, original_text):
|
||
"""
|
||
替换拼音声调为占位符 <pinyin_a>, <pinyin_b>, ...
|
||
例如:xuan4 -> <pinyin_a>
|
||
"""
|
||
# 声母韵母+声调数字
|
||
origin_pinyin_pattern = re.compile(TextNormalizer.PINYIN_TONE_PATTERN, re.IGNORECASE)
|
||
original_pinyin_list = re.findall(origin_pinyin_pattern, original_text)
|
||
if len(original_pinyin_list) == 0:
|
||
return (original_text, None)
|
||
original_pinyin_list = list(set("".join(p) for p in original_pinyin_list))
|
||
transformed_text = original_text
|
||
# 替换为占位符 <pinyin_a>, <pinyin_b>, ...
|
||
for i, pinyin in enumerate(original_pinyin_list):
|
||
number = chr(ord("a") + i)
|
||
transformed_text = transformed_text.replace(pinyin, f"<pinyin_{number}>")
|
||
|
||
# print("original_text: ", original_text)
|
||
# print("transformed_text: ", transformed_text)
|
||
return transformed_text, original_pinyin_list
|
||
|
||
def restore_pinyin_tones(self, normalized_text, original_pinyin_list):
|
||
"""
|
||
恢复拼音中的音调数字(1-5)为原来的拼音
|
||
例如:<pinyin_a> -> original_pinyin_list[0]
|
||
"""
|
||
if not original_pinyin_list or len(original_pinyin_list) == 0:
|
||
return normalized_text
|
||
|
||
transformed_text = normalized_text
|
||
# 替换占位符 <pinyin_a>, <pinyin_b>, ...
|
||
for i, pinyin in enumerate(original_pinyin_list):
|
||
number = chr(ord("a") + i)
|
||
pinyin = self.correct_pinyin(pinyin)
|
||
transformed_text = transformed_text.replace(f"<pinyin_{number}>", pinyin)
|
||
# print("normalized_text: ", normalized_text)
|
||
# print("transformed_text: ", transformed_text)
|
||
return transformed_text
|
||
|
||
|
||
class TextTokenizer:
|
||
def __init__(self, vocab_file: str, normalizer: TextNormalizer = None):
|
||
self.vocab_file = vocab_file
|
||
self.normalizer = normalizer
|
||
|
||
if self.vocab_file is None:
|
||
raise ValueError("vocab_file is None")
|
||
if not os.path.exists(self.vocab_file):
|
||
raise ValueError(f"vocab_file {self.vocab_file} does not exist")
|
||
if self.normalizer:
|
||
self.normalizer.load()
|
||
# 加载词表
|
||
self.sp_model = SentencePieceProcessor(model_file=self.vocab_file)
|
||
|
||
self.pre_tokenizers = [
|
||
# 预处理器
|
||
tokenize_by_CJK_char,
|
||
]
|
||
|
||
@property
|
||
def vocab_size(self):
|
||
return self.sp_model.GetPieceSize()
|
||
|
||
@property
|
||
def unk_token(self):
|
||
return "<unk>"
|
||
|
||
@property
|
||
def pad_token(self):
|
||
return None
|
||
|
||
@property
|
||
def bos_token(self):
|
||
return "<s>"
|
||
|
||
@property
|
||
def eos_token(self):
|
||
return "</s>"
|
||
|
||
@property
|
||
def pad_token_id(self):
|
||
return -1
|
||
|
||
@property
|
||
def bos_token_id(self):
|
||
return 0
|
||
|
||
@property
|
||
def eos_token_id(self):
|
||
return 1
|
||
|
||
@property
|
||
def unk_token_id(self):
|
||
return self.sp_model.unk_id()
|
||
|
||
@property
|
||
def special_tokens_map(self):
|
||
return {
|
||
"unk_token": self.unk_token,
|
||
"pad_token": self.pad_token,
|
||
"bos_token": self.bos_token,
|
||
"eos_token": self.eos_token,
|
||
}
|
||
|
||
def get_vocab(self):
|
||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||
return vocab
|
||
|
||
@overload
|
||
def convert_ids_to_tokens(self, ids: int) -> str: ...
|
||
|
||
@overload
|
||
def convert_ids_to_tokens(self, ids: List[int]) -> List[str]: ...
|
||
|
||
def convert_ids_to_tokens(self, ids: Union[List[int], int]):
|
||
return self.sp_model.IdToPiece(ids)
|
||
|
||
def convert_tokens_to_ids(self, tokens: Union[List[str], str]) -> List[int]:
|
||
if isinstance(tokens, str):
|
||
tokens = [tokens]
|
||
return [self.sp_model.PieceToId(token) for token in tokens]
|
||
|
||
def tokenize(self, text: str) -> List[str]:
|
||
return self.encode(text, out_type=str)
|
||
|
||
def encode(self, text: str, **kwargs):
|
||
if len(text) == 0:
|
||
return []
|
||
if len(text.strip()) == 1:
|
||
return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)
|
||
# 预处理
|
||
if self.normalizer:
|
||
text = self.normalizer.normalize(text)
|
||
if len(self.pre_tokenizers) > 0:
|
||
for pre_tokenizer in self.pre_tokenizers:
|
||
text = pre_tokenizer(text)
|
||
return self.sp_model.Encode(text, out_type=kwargs.pop("out_type", int), **kwargs)
|
||
|
||
def batch_encode(self, texts: List[str], **kwargs):
|
||
# 预处理
|
||
if self.normalizer:
|
||
texts = [self.normalizer.normalize(text) for text in texts]
|
||
if len(self.pre_tokenizers) > 0:
|
||
for pre_tokenizer in self.pre_tokenizers:
|
||
texts = [pre_tokenizer(text) for text in texts]
|
||
return self.sp_model.Encode(texts, out_type=kwargs.pop("out_type", int), **kwargs)
|
||
|
||
def decode(self, ids: Union[List[int], int], do_lower_case=False, **kwargs):
|
||
if isinstance(ids, int):
|
||
ids = [ids]
|
||
decoded = self.sp_model.Decode(ids, out_type=kwargs.pop("out_type", str), **kwargs)
|
||
return de_tokenized_by_CJK_char(decoded, do_lower_case=do_lower_case)
|
||
|
||
@staticmethod
|
||
def split_segments_by_token(
|
||
tokenized_str: List[str],
|
||
split_tokens: List[str],
|
||
max_text_tokens_per_segment: int,
|
||
quick_streaming_tokens: int = 0
|
||
) -> List[List[str]]:
|
||
"""
|
||
将tokenize后的结果按特定token进一步分割
|
||
"""
|
||
# 处理特殊情况
|
||
if len(tokenized_str) == 0:
|
||
return []
|
||
segments: List[List[str]] = []
|
||
current_segment = []
|
||
current_segment_tokens_len = 0
|
||
for i in range(len(tokenized_str)):
|
||
token = tokenized_str[i]
|
||
current_segment.append(token)
|
||
current_segment_tokens_len += 1
|
||
if not ("," in split_tokens or "▁," in split_tokens ) and ("," in current_segment or "▁," in current_segment):
|
||
# 如果当前tokens中有,,则按,分割
|
||
sub_segments = TextTokenizer.split_segments_by_token(
|
||
current_segment, [",", "▁,"], max_text_tokens_per_segment=max_text_tokens_per_segment, quick_streaming_tokens = quick_streaming_tokens
|
||
)
|
||
elif "-" not in split_tokens and "-" in current_segment:
|
||
# 没有,,则按-分割
|
||
sub_segments = TextTokenizer.split_segments_by_token(
|
||
current_segment, ["-"], max_text_tokens_per_segment=max_text_tokens_per_segment, quick_streaming_tokens = quick_streaming_tokens
|
||
)
|
||
elif current_segment_tokens_len <= max_text_tokens_per_segment:
|
||
if token in split_tokens and current_segment_tokens_len > 2:
|
||
if i < len(tokenized_str) - 1:
|
||
if tokenized_str[i + 1] in ["'", "▁'"]:
|
||
# 后续token是',则不切分
|
||
current_segment.append(tokenized_str[i + 1])
|
||
i += 1
|
||
segments.append(current_segment)
|
||
current_segment = []
|
||
current_segment_tokens_len = 0
|
||
continue
|
||
# 如果当前tokens的长度超过最大限制
|
||
else:
|
||
# 按照长度分割
|
||
sub_segments = []
|
||
for j in range(0, len(current_segment), max_text_tokens_per_segment):
|
||
if j + max_text_tokens_per_segment < len(current_segment):
|
||
sub_segments.append(current_segment[j : j + max_text_tokens_per_segment])
|
||
else:
|
||
sub_segments.append(current_segment[j:])
|
||
warnings.warn(
|
||
f"The tokens length of segment exceeds limit: {max_text_tokens_per_segment}, "
|
||
f"Tokens in segment: {current_segment}."
|
||
"Maybe unexpected behavior",
|
||
RuntimeWarning,
|
||
)
|
||
segments.extend(sub_segments)
|
||
current_segment = []
|
||
current_segment_tokens_len = 0
|
||
if current_segment_tokens_len > 0:
|
||
assert current_segment_tokens_len <= max_text_tokens_per_segment
|
||
segments.append(current_segment)
|
||
# 如果相邻的句子加起来长度小于最大限制,且此前token总数超过quick_streaming_tokens,则合并
|
||
merged_segments = []
|
||
total_token = 0
|
||
for segment in segments:
|
||
total_token += len(segment)
|
||
if len(segment) == 0:
|
||
continue
|
||
if len(merged_segments) == 0:
|
||
merged_segments.append(segment)
|
||
elif len(merged_segments[-1]) + len(segment) <= max_text_tokens_per_segment and total_token > quick_streaming_tokens:
|
||
merged_segments[-1] = merged_segments[-1] + segment
|
||
# 或小于最大长度限制的一半,则合并
|
||
elif len(merged_segments[-1]) + len(segment) <= max_text_tokens_per_segment / 2:
|
||
merged_segments[-1] = merged_segments[-1] + segment
|
||
else:
|
||
merged_segments.append(segment)
|
||
return merged_segments
|
||
|
||
punctuation_marks_tokens = [
|
||
".",
|
||
"!",
|
||
"?",
|
||
"▁.",
|
||
# "▁!", # unk
|
||
"▁?",
|
||
"▁...", # ellipsis
|
||
]
|
||
def split_segments(self, tokenized: List[str], max_text_tokens_per_segment=120, quick_streaming_tokens = 0) -> List[List[str]]:
|
||
return TextTokenizer.split_segments_by_token(
|
||
tokenized, self.punctuation_marks_tokens, max_text_tokens_per_segment=max_text_tokens_per_segment, quick_streaming_tokens = quick_streaming_tokens
|
||
)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
# 测试程序
|
||
|
||
text_normalizer = TextNormalizer()
|
||
|
||
cases = [
|
||
"IndexTTS 正式发布1.0版本了,效果666",
|
||
"晕XUAN4是一种GAN3觉",
|
||
"我爱你!",
|
||
"I love you!",
|
||
"“我爱你”的英语是“I love you”",
|
||
"2.5平方电线",
|
||
"共465篇,约315万字",
|
||
"2002年的第一场雪,下在了2003年",
|
||
"速度是10km/h",
|
||
"现在是北京时间2025年01月11日 20:00",
|
||
"他这条裤子是2012年买的,花了200块钱",
|
||
"电话:135-4567-8900",
|
||
"1键3连",
|
||
"他这条视频点赞3000+,评论1000+,收藏500+",
|
||
"这是1024元的手机,你要吗?",
|
||
"受不liao3你了",
|
||
"“衣裳”不读衣chang2,而是读衣shang5",
|
||
"最zhong4要的是:不要chong2蹈覆辙",
|
||
"不zuo1死就不会死",
|
||
"See you at 8:00 AM",
|
||
"8:00 AM 开会",
|
||
"Couting down 3, 2, 1, go!",
|
||
"数到3就开始:1、2、3",
|
||
"This sales for 2.5% off, only $12.5.",
|
||
"5G网络是4G网络的升级版,2G网络是3G网络的前身",
|
||
"苹果于2030/1/2发布新 iPhone 2X 系列手机,最低售价仅 ¥12999",
|
||
"这酒...里...有毒...",
|
||
# 异常case
|
||
"只有,,,才是最好的",
|
||
"babala2是什么?", # babala二是什么?
|
||
"用beta1测试", # 用beta一测试
|
||
"have you ever been to beta2?", # have you ever been to beta two?
|
||
"such as XTTS, CosyVoice2, Fish-Speech, and F5-TTS", # such as xtts,cosyvoice two,fish-speech,and f five-tts
|
||
"where's the money?", # where is the money?
|
||
"who's there?", # who is there?
|
||
"which's the best?", # which is the best?
|
||
"how's it going?", # how is it going?
|
||
"今天是个好日子 it's a good day", # 今天是个好日子 it is a good day
|
||
# 人名
|
||
"约瑟夫·高登-莱维特(Joseph Gordon-Levitt is an American actor)",
|
||
"蒂莫西·唐纳德·库克(英文名:Timothy Donald Cook),通称蒂姆·库克(Tim Cook),美国商业经理、工业工程师和工业开发商,现任苹果公司首席执行官。",
|
||
# 长句子
|
||
"《盗梦空间》是由美国华纳兄弟影片公司出品的电影,由克里斯托弗·诺兰执导并编剧,莱昂纳多·迪卡普里奥、玛丽昂·歌迪亚、约瑟夫·高登-莱维特、艾利奥特·佩吉、汤姆·哈迪等联袂主演,2010年7月16日在美国上映,2010年9月1日在中国内地上映,2020年8月28日在中国内地重映。影片剧情游走于梦境与现实之间,被定义为“发生在意识结构内的当代动作科幻片”,讲述了由莱昂纳多·迪卡普里奥扮演的造梦师,带领特工团队进入他人梦境,从他人的潜意识中盗取机密,并重塑他人梦境的故事。",
|
||
"清晨拉开窗帘,阳光洒在窗台的Bloomixy花艺礼盒上——薰衣草香薰蜡烛唤醒嗅觉,永生花束折射出晨露般光泽。设计师将“自然绽放美学”融入每个细节:手工陶瓷花瓶可作首饰收纳,香薰精油含依兰依兰舒缓配方。限量款附赠《365天插花灵感手册》,让每个平凡日子都有花开仪式感。\n宴会厅灯光暗下的刹那,Glimmeria星月系列耳坠开始发光——瑞士冷珐琅工艺让蓝宝石如银河流动,钛合金骨架仅3.2g无负重感。设计师秘密:内置微型重力感应器,随步伐产生0.01mm振幅,打造“行走的星光”。七夕限定礼盒含星座定制铭牌,让爱意如星辰永恒闪耀。",
|
||
"电影1:“黑暗骑士”(演员:克里斯蒂安·贝尔、希斯·莱杰;导演:克里斯托弗·诺兰);电影2:“盗梦空间”(演员:莱昂纳多·迪卡普里奥;导演:克里斯托弗·诺兰);电影3:“钢琴家”(演员:艾德里安·布洛迪;导演:罗曼·波兰斯基);电影4:“泰坦尼克号”(演员:莱昂纳多·迪卡普里奥;导演:詹姆斯·卡梅隆);电影5:“阿凡达”(演员:萨姆·沃辛顿;导演:詹姆斯·卡梅隆);电影6:“南方公园:大电影”(演员:马特·斯通、托马斯·艾恩格瑞;导演:特雷·帕克)",
|
||
]
|
||
# 测试分词器
|
||
tokenizer = TextTokenizer(
|
||
vocab_file="checkpoints/bpe.model",
|
||
normalizer=text_normalizer,
|
||
)
|
||
|
||
codes = tokenizer.batch_encode(
|
||
cases,
|
||
out_type=int,
|
||
)
|
||
|
||
print(f"vocab_size: {tokenizer.vocab_size}")
|
||
# print(f"pad_token: {tokenizer.pad_token}, pad_token_id: {tokenizer.pad_token_id}")
|
||
print(f"bos_token: {tokenizer.bos_token}, bos_token_id: {tokenizer.bos_token_id}")
|
||
print(f"eos_token: {tokenizer.eos_token}, eos_token_id: {tokenizer.eos_token_id}")
|
||
print(f"unk_token: {tokenizer.unk_token}, unk_token_id: {tokenizer.unk_token_id}")
|
||
# 测试拼音 (8474-10201)
|
||
for id in range(8474, 10201):
|
||
pinyin = tokenizer.convert_ids_to_tokens(id)
|
||
if re.match(TextNormalizer.PINYIN_TONE_PATTERN, pinyin, re.IGNORECASE) is None:
|
||
print(f"{pinyin} should be matched")
|
||
for badcase in [
|
||
"beta1", "better1", "voice2", "bala2", "babala2", "hunger2"
|
||
]:
|
||
if re.match(TextNormalizer.PINYIN_TONE_PATTERN, badcase, re.IGNORECASE) is not None:
|
||
print(f"{badcase} should not be matched!")
|
||
# 不应该有 unk_token_id
|
||
for t in set([*TextTokenizer.punctuation_marks_tokens, ",", "▁,", "-", "▁..."]):
|
||
tokens = tokenizer.convert_tokens_to_ids(t)
|
||
if tokenizer.unk_token_id in tokens:
|
||
print(f"Warning: {t} is unknown token")
|
||
print(f"`{t}`", "->", tokens, "->", tokenizer.convert_ids_to_tokens(tokens))
|
||
for ch in set(tokenizer.normalizer.zh_char_rep_map.values()):
|
||
# 测试 normalize后的字符能被分词器识别
|
||
print(f"`{ch}`", "->", tokenizer.sp_model.Encode(ch, out_type=str))
|
||
print(f"` {ch}`", "->", tokenizer.sp_model.Encode(f" {ch}", out_type=str))
|
||
max_text_tokens_per_segment=120
|
||
for i in range(len(cases)):
|
||
print(f"原始文本: {cases[i]}")
|
||
print(f"Normalized: {text_normalizer.normalize(cases[i])}")
|
||
tokens = tokenizer.tokenize(cases[i])
|
||
print("Tokenzied: ", ", ".join([f"`{t}`" for t in tokens]))
|
||
segments = tokenizer.split_segments(tokens, max_text_tokens_per_segment=max_text_tokens_per_segment)
|
||
print("Segments count:", len(segments))
|
||
if len(segments) > 1:
|
||
for j in range(len(segments)):
|
||
print(f" {j}, count:", len(segments[j]), ", tokens:", "".join(segments[j]))
|
||
if len(segments[j]) > max_text_tokens_per_segment:
|
||
print(f"Warning: segment {j} is too long, length: {len(segments[j])}")
|
||
#print(f"Token IDs (first 10): {codes[i][:10]}")
|
||
if tokenizer.unk_token in codes[i]:
|
||
print(f"Warning: `{cases[i]}` contains UNKNOWN token")
|
||
print(f"Decoded: {tokenizer.decode(codes[i], do_lower_case=True)}")
|
||
print("-" * 50)
|