mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 10:20:24 +08:00
* indextts2 * update lfs for audio files --------- Co-authored-by: wangyining02 <wangyining02@bilibili.com>
148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
from transformers import SeamlessM4TFeatureExtractor
|
|
from transformers import Wav2Vec2BertModel
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
import librosa
|
|
import os
|
|
import pickle
|
|
import math
|
|
import json
|
|
import safetensors
|
|
import json5
|
|
# from codec.kmeans.repcodec_model import RepCodec
|
|
from startts.examples.ftchar.models.codec.kmeans.repcodec_model import RepCodec
|
|
|
|
class JsonHParams:
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
if type(v) == dict:
|
|
v = JsonHParams(**v)
|
|
self[k] = v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return setattr(self, key, value)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return self.__dict__.__repr__()
|
|
|
|
|
|
def _load_config(config_fn, lowercase=False):
|
|
"""Load configurations into a dictionary
|
|
|
|
Args:
|
|
config_fn (str): path to configuration file
|
|
lowercase (bool, optional): whether changing keys to lower case. Defaults to False.
|
|
|
|
Returns:
|
|
dict: dictionary that stores configurations
|
|
"""
|
|
with open(config_fn, "r") as f:
|
|
data = f.read()
|
|
config_ = json5.loads(data)
|
|
if "base_config" in config_:
|
|
# load configurations from new path
|
|
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"])
|
|
p_config_ = _load_config(p_config_path)
|
|
config_ = override_config(p_config_, config_)
|
|
if lowercase:
|
|
# change keys in config_ to lower case
|
|
config_ = get_lowercase_keys_config(config_)
|
|
return config_
|
|
|
|
|
|
def load_config(config_fn, lowercase=False):
|
|
"""Load configurations into a dictionary
|
|
|
|
Args:
|
|
config_fn (str): path to configuration file
|
|
lowercase (bool, optional): _description_. Defaults to False.
|
|
|
|
Returns:
|
|
JsonHParams: an object that stores configurations
|
|
"""
|
|
config_ = _load_config(config_fn, lowercase=lowercase)
|
|
# create an JsonHParams object with configuration dict
|
|
cfg = JsonHParams(**config_)
|
|
return cfg
|
|
|
|
class Extract_wav2vectbert:
|
|
def __init__(self,device):
|
|
#semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
|
|
self.semantic_model = Wav2Vec2BertModel.from_pretrained("./MaskGCT_model/w2v_bert/")
|
|
self.semantic_model.eval()
|
|
self.semantic_model.to(device)
|
|
self.stat_mean_var = torch.load("./MaskGCT_model/wav2vec2bert_stats.pt")
|
|
self.semantic_mean = self.stat_mean_var["mean"]
|
|
self.semantic_std = torch.sqrt(self.stat_mean_var["var"])
|
|
self.semantic_mean = self.semantic_mean.to(device)
|
|
self.semantic_std = self.semantic_std.to(device)
|
|
self.processor = SeamlessM4TFeatureExtractor.from_pretrained(
|
|
"./MaskGCT_model/w2v_bert/")
|
|
self.device = device
|
|
|
|
cfg_maskgct = load_config('./MaskGCT_model/maskgct.json')
|
|
cfg = cfg_maskgct.model.semantic_codec
|
|
self.semantic_code_ckpt = r'./MaskGCT_model/semantic_codec/model.safetensors'
|
|
self.semantic_codec = RepCodec(cfg=cfg)
|
|
self.semantic_codec.eval()
|
|
self.semantic_codec.to(device)
|
|
safetensors.torch.load_model(self.semantic_codec, self.semantic_code_ckpt)
|
|
|
|
@torch.no_grad()
|
|
def extract_features(self, speech): # speech [b,T]
|
|
inputs = self.processor(speech, sampling_rate=16000, return_tensors="pt")
|
|
input_features = inputs["input_features"]
|
|
attention_mask = inputs["attention_mask"]
|
|
return input_features, attention_mask #[2, 620, 160] [2, 620]
|
|
|
|
@torch.no_grad()
|
|
def extract_semantic_code(self, input_features, attention_mask):
|
|
vq_emb = self.semantic_model( # Wav2Vec2BertModel
|
|
input_features=input_features,
|
|
attention_mask=attention_mask,
|
|
output_hidden_states=True,
|
|
)
|
|
feat = vq_emb.hidden_states[17] # (B, T, C)
|
|
feat = (feat - self.semantic_mean.to(feat)) / self.semantic_std.to(feat)
|
|
|
|
semantic_code, rec_feat = self.semantic_codec.quantize(feat) # (B, T)
|
|
return semantic_code, rec_feat
|
|
|
|
def feature_extract(self, prompt_speech):
|
|
|
|
input_features, attention_mask = self.extract_features(prompt_speech)
|
|
input_features = input_features.to(self.device)
|
|
attention_mask = attention_mask.to(self.device)
|
|
semantic_code, rec_feat = self.extract_semantic_code(input_features, attention_mask)
|
|
return semantic_code,rec_feat
|
|
|
|
if __name__=='__main__':
|
|
speech_path = 'test/magi1.wav'
|
|
speech = librosa.load(speech_path, sr=16000)[0]
|
|
speech = np.c_[speech,speech,speech].T #[2, 198559]
|
|
print(speech.shape)
|
|
|
|
Extract_feature = Extract_wav2vectbert('cuda:0')
|
|
semantic_code,rec_feat = Extract_feature.feature_extract(speech)
|
|
print(semantic_code.shape,rec_feat.shape)
|
|
|