mirror of
https://github.com/index-tts/index-tts.git
synced 2025-11-28 18:30:25 +08:00
89 lines
2.3 KiB
Python
89 lines
2.3 KiB
Python
"""Library implementing linear transformation.
|
|
|
|
Authors
|
|
* Mirco Ravanelli 2020
|
|
* Davide Borra 2021
|
|
"""
|
|
|
|
import logging
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class Linear(torch.nn.Module):
|
|
"""Computes a linear transformation y = wx + b.
|
|
|
|
Arguments
|
|
---------
|
|
n_neurons : int
|
|
It is the number of output neurons (i.e, the dimensionality of the
|
|
output).
|
|
input_shape : tuple
|
|
It is the shape of the input tensor.
|
|
input_size : int
|
|
Size of the input tensor.
|
|
bias : bool
|
|
If True, the additive bias b is adopted.
|
|
max_norm : float
|
|
weight max-norm.
|
|
combine_dims : bool
|
|
If True and the input is 4D, combine 3rd and 4th dimensions of input.
|
|
|
|
Example
|
|
-------
|
|
>>> inputs = torch.rand(10, 50, 40)
|
|
>>> lin_t = Linear(input_shape=(10, 50, 40), n_neurons=100)
|
|
>>> output = lin_t(inputs)
|
|
>>> output.shape
|
|
torch.Size([10, 50, 100])
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_neurons,
|
|
input_shape=None,
|
|
input_size=None,
|
|
bias=True,
|
|
max_norm=None,
|
|
combine_dims=False,
|
|
):
|
|
super().__init__()
|
|
self.max_norm = max_norm
|
|
self.combine_dims = combine_dims
|
|
|
|
if input_shape is None and input_size is None:
|
|
raise ValueError("Expected one of input_shape or input_size")
|
|
|
|
if input_size is None:
|
|
input_size = input_shape[-1]
|
|
if len(input_shape) == 4 and self.combine_dims:
|
|
input_size = input_shape[2] * input_shape[3]
|
|
|
|
# Weights are initialized following pytorch approach
|
|
self.w = nn.Linear(input_size, n_neurons, bias=bias)
|
|
|
|
def forward(self, x):
|
|
"""Returns the linear transformation of input tensor.
|
|
|
|
Arguments
|
|
---------
|
|
x : torch.Tensor
|
|
Input to transform linearly.
|
|
|
|
Returns
|
|
-------
|
|
wx : torch.Tensor
|
|
The linearly transformed outputs.
|
|
"""
|
|
if x.ndim == 4 and self.combine_dims:
|
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3])
|
|
|
|
if self.max_norm is not None:
|
|
self.w.weight.data = torch.renorm(
|
|
self.w.weight.data, p=2, dim=0, maxnorm=self.max_norm
|
|
)
|
|
|
|
wx = self.w(x)
|
|
|
|
return wx
|